ОБОБЩЕННЫЕ НОРМАЛЬНЫЕ ФОРМЫ СИСТЕМ ОДУ С НЕВОЗМУЩЕННОЙ ЧАСТЬЮ $(x_2, \pm x_1^{2n-1})$

В. В. Басов, Л. С. Михлин

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9

Конструктивным методом получены все структуры обобщенных нормальных форм, к которым почти тождественной заменой может быть сведена двумерная автономная система ОДУ с невозмущенной частью $(x_2,\pm x_1^{2n-1})$ для $\forall\,n\geq 2$. Библиогр. 3 назв.

Ключевые слова: обобщенная нормальная форма, квазиоднородные многочлены, резонансные уравнения.

1. Введение. В работе рассматривается вещественная двумерная аналитическая в нуле система

$$\dot{x}_1 = x_2 + \sum_{k=n}^{\infty} X_1^{[k]}(x_1, x_2), \quad \dot{x}_2 = \sigma x_1^{2n-1} + \sum_{k=n}^{\infty} X_2^{[k]}(x_1, x_2) \qquad (\sigma = \pm 1, \ n \ge 2), \quad (1)$$

невозмущенная часть которой $(x_2,\sigma x_1^{2n-1})$ является квазиоднородным многочленом обобщенной степени n-1 с весом $\gamma=(1,n)$, а возмущения $X_i(x_1,x_2)$ разложены в суммы квазиоднородных многочленов $X_i^{[k]}(x_1,x_2)$ обобщенной степени k $(k\geq n)$ с тем же весом, т. е. $X_i^{[k]}=\sum_{q_1+nq_2=k+\gamma_i}X_i^{[q_1,nq_2]}x_1^{q_1}x_2^{q_2}$ (i=1,2). Вопросы, связанные с нормализацией системы (1) в частном случае, когда n=2,

Вопросы, связанные с нормализацией системы (1) в частном случае, когда n=2, были исследованы в работах [1, 2]. Определения веса, обобщенной степени и квазиоднородного многочлена (КОМ) можно найти, например, в [2, разд. 2].

Пусть формальная почти тождественная замена

$$x_i = y_i + \sum_{k=n}^{\infty} h_i^{[k-n+1]}(y_1, y_2)$$
 $(i = 1, 2),$ (2)

в которой $h_i^{[k-n+1]}=\sum_{q_1+nq_2=k-n+1+\gamma_i}h_i^{[q_1,nq_2]}y_1^{q_1}y_2^{q_2},$ преобразует (1) в систему

$$\dot{y}_1 = y_2 + Y_1(y_1, y_2), \quad \dot{y}_2 = \sigma y_1^{2n-1} + Y_2(y_1, y_2) \qquad (\sigma = \pm 1, \ n \ge 2),$$
 (3)

где возмущения
$$Y_i=\sum_{k=n}^\infty Y_i^{[k]}(y_1,y_2),$$
 а КОМ $Y_i^{[k]}=\sum_{q_1+nq_2=k+\gamma_i} Y_i^{[q_1,\,nq_2]}y_1^{q_1}y_2^{q_2}.$

Задача заключается в том, чтобы методом резонансных уравнений, подробно описанном, например, в [2, разд. 4], в явном виде указать все структуры обобщенных нормальных форм (3), к которым можно привести систему (1) почти тождественными заменами (2). При этом с определениями резонансных уравнений, резонансных наборов и обобщенной нормальной формы $(OH\Phi)$ можно ознакомиться также в [2, разд. 4].

Таким образом, предлагаемая работа является обобщением работ [1, 2] на случай произвольного n. Кроме того, она непосредственно усиливает полученные в [1, 2] результаты, так как более чем в два раза уменьшает число не установленных точно резонансных коэффициентов системы.

2. Получение связующей системы. Дифференцируя замену (2) в силу систем (1),(3) и выделяя члены обобщенной степени $k \geq n$, получаем тождества

$$\frac{\partial h_{1}^{[k-n+1]}}{\partial y_{1}}y_{2} + \frac{\partial h_{1}^{[k-n+1]}}{\partial y_{2}}\sigma y_{1}^{2n-1} - h_{2}^{[k-n+1]} + Y_{1}^{[k]} = \widetilde{Y}_{1}^{[k]},$$

$$\frac{\partial h_{2}^{[k-n+1]}}{\partial y_{1}}y_{2} + \frac{\partial h_{2}^{[k-n+1]}}{\partial y_{2}}\sigma y_{1}^{2n-1} - (2n-1)\sigma y_{1}^{2n-2}h_{1}^{[k-n+1]} + Y_{2}^{[k]} = \widetilde{Y}_{2}^{[k]},$$

$$(4)$$

причем величины $\widetilde{Y}_1^{[k]}$ и $\widetilde{Y}_2^{[k]}$ при последовательных относительно k вычислениях коэффициентов уже известны, так как содержат только предшествующие КОМ.

Приравнивая коэффициенты при $y_1^{q_1}y_2^{q_2}$, получаем линейную связующую систему

$$(q_{1}+1)h_{1}^{[q_{1}+1, n(q_{2}-1)]} + \sigma(q_{2}+1)h_{1}^{[q_{1}-(2n-1), n(q_{2}+1)]} - h_{2}^{[q_{1}, nq_{2}]} = \widehat{Y}_{1}^{[q_{1}, nq_{2}]} \quad (q_{1}+nq_{2}=k+\gamma_{1}),$$

$$(q_{1}+1)h_{2}^{[q_{1}+1, n(q_{2}-1)]} + \sigma(q_{2}+1)h_{2}^{[q_{1}-(2n-1), n(q_{2}+1)]} - h_{2}^{[q_{1}-(2n-2), nq_{2}]} = \widehat{Y}_{2}^{[q_{1}, nq_{2}]} \quad (q_{1}+nq_{2}=k+\gamma_{2}), \quad (5)$$

в которой $\widehat{Y}_i^{[q_1,nq_2]}=\widetilde{Y}_i^{[q_1,nq_2]}-Y_i^{[q_1,nq_2]} \quad (i=1,2), \ \gamma_1=1, \ \gamma_2=n.$

Поскольку $k \ge n$, а $q_1 \in \mathbb{Z}_+$, для k и q_1 удобно ввести следующее разложение:

$$k = 2nr + v - n \ (r \in \mathbb{N}, \ v = 0, 1, \dots, 2n - 1), \ q_1 = 2ns + l \ (s \in \mathbb{Z}_+, \ l = 0, 1, \dots, 2n - 1).$$

Тогда $q_2 = 2r - 2s - 1 + (\gamma_i + v - l)/n$.

- Таким образом, для $\forall\, k\geq n\geq 2$ индекс $q_2\in\mathbb{Z}_+$ в следующих двух случаях: $a)\; l=(v+1\mod 2n),\; q_1=2ns+v+1,\; q_2=2r-2s-1\;\;(s=\overline{\tau_1^{va},r-1}\;)$ при i=1и $l=v, q_1=2ns+v, q_2=2r-2s$ $(s=\overline{0,r})$ при i=2;
- $b)\ l = (v+n+1\ \mathrm{mod}\ 2n),\ q_1 = 2ns+v+n+1,\ q_2 = 2r-2s-2\ \left(s = \overline{\tau_1^{vb},r-1}\right)\ \mathrm{пр}\mathsf{u}\ i = 1$ и $l=(v+n \bmod 2n), \ q_1=2ns+v+n, \ q_2=2r-2s-1 \ (s=\overline{\tau_2^{vb},r-1})$ при i=2. Здесь $\tau_1^{va}=\{0$ при $v=\overline{0,2n-2};\ -1$ при $v=2n-1\},\ \tau_1^{vb}=\{0$ при $v=\overline{0,n-2};\ -1$ при $v=n-1,2n-1\},\ \tau_2^{vb}=\{0$ при $v=\overline{0,n-1};\ -1$ при $v=\overline{n,2n-1}\}.$
- 3. Структура связующей системы в случае а. Введем новые обозначения: $h_{1,s}^{va}=h_1^{[2n(s-1)+v+2,2n(r-s)]}$ $(s=\overline{\tau^{va},r})$, где $\tau^{va}=\{1$ при $v=\overline{0,2n-3};0$ при $v=2n-2,2n-1\};$ $h_{2,s}^{va}=h_2^{[2ns+v+1,2n(r-s-1)+n]},$ $Y_{2,s}^{va}=\widehat{Y}_2^{[2ns+v,2n(r-s)]}$ $(s=\overline{0,r}),$ $Y_{1,s}^{va}=\widehat{Y}_1^{[2ns+v+1,2n(r-s-1)+n]}$ $(s=\overline{\tau_1^{va},r-1})$. Тогда система (5) примет вид

$$\sigma(2r-2s)h_{1,s}^{va} + (2ns+v+2)h_{1,s+1}^{va} - h_{2,s}^{va} = Y_{1,s}^{va} \quad (s = \overline{\tau_1^{va}, r-1}),$$

$$-(2n-1)\sigma h_{1,s}^{va} + \sigma(2r-2s+1)h_{2,s-1}^{va} + (2ns+v+1)h_{2,s}^{va} = Y_{2,s}^{va} \quad (s = \overline{0,r}).$$
(6)

Подставляя $h_{2.s-1}^{va}$ и $h_{2.s}^{va}$ из (6_1) в (6_2) , получаем трехдиагональную систему

$$a_s^{va} h_{1,s-1}^{va} + b_s^{va} h_{1,s}^{va} + c_s^{va} h_{1,s+1}^{va} = Y_{0,s}^{va} \qquad (s = \overline{0,r}),$$

$$(7)$$

в которой

$$\begin{array}{l} a_s^{va} = (2r-2s+1)(2r-2s+2) \quad (s=\overline{\tau^{va}+1,r} \), \\ b_s^{va} = \sigma((2r-2s)(4ns-2n+2v+3) + \underline{2ns-4n+v} + 3) \quad (s=\overline{\tau^{va},r} \), \\ c_s^{va} = (2ns+v+1)(2ns+v+2) \quad (s=\overline{\tau^{va}-1,r-1} \); \end{array}$$

 $Y_{0,s}^{va}=\sigma(2r-2s+1)Y_{1,s-1}^{va}+(2ns+v+1)Y_{1,s}^{va}+Y_{2,s}^{va}\ \ (s=\overline{0,r}\),$ причем $Y_{1,-1}^{va},Y_{1,r}^{va}=0$ для всех v, кроме $Y_{1,-1}^{2n-1}$ a .

Запишем (7) в матричном виде, выделяя при $v = \overline{0, 2n-3}$ первое уравнение:

$$c_0^{va}h_{1,1}^{va} = Y_{0,0}^{va} \quad (v = \overline{0,2n-3}), \qquad A^{va}h_1^{va} = Y_0^{va} \quad (v = \overline{0,2n-1}), \tag{8}$$

где
$$A^{va} = \begin{pmatrix} b^{va}_{\tau^{va}} & c^{va}_{\tau^{va}} & 0 & \dots & 0 \\ a^{va}_{\tau^{va}+1} & b^{va}_{\tau^{va}+1} & c^{va}_{\tau^{va}+1} & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & a^{va}_{r-1} & b^{va}_{r-1} & c^{va}_{r-1} \\ 0 & \dots & 0 & a^{va}_{r} & b^{va}_{r} \end{pmatrix}_{(r-\tau^{va}+1)}, \quad h^{va}_{1} = (h^{va}_{1,\tau^{va}}, \dots, h^{va}_{1,r}),$$

Методом Гаусса аннулируем в A^{va} элементы $a^{va}_{\tau^{va}+1}, a^{va}_{\tau^{va}+2}, \dots$, получая d^{va}_s вместо b^{va}_s и $\overline{Y}^{va}_{0,s}$ вместо $Y^{va}_{0,s}$, пока $d^{va}_{s-1} \neq 0 \quad (s \geq \tau^{va})$, по рекуррентным формулам

$$\begin{split} d^{va}_{\tau^{va}} &= b^{va}_{\tau^{va}}, \ \ \overline{Y}^{va}_{0,\tau^{va}} &= Y^{va}_{0,\tau^{va}}; \\ d^{va}_{s} &= b^{va}_{s} - \frac{a^{va}_{s} c^{va}_{s-1}}{d^{va}_{s-1}}, \ \ \overline{Y}^{va}_{0,s} &= Y^{va}_{0,s} - \frac{\overline{Y}^{va}_{0,s-1} a^{va}_{s}}{d^{va}_{s-1}} \ \ (s = \tau^{va} + 1, \ \tau^{va} + 2, \ldots). \end{split} \tag{9}$$

Пемма 1. В формуле (9) элементы $\sigma d_{\tau^{va}}^{va}, \dots, \sigma d_{r-1}^{va} > 0$, а элемент $\sigma d_r^{va} < 0$, кроме $d_1^{2n-3a} = 0$ при r = 1.

Доказательство. Из (7) и (9) получаем $d_1^{2n-3\,a}=0$ при r=1. Пусть теперь r > 1.

Для оценки снизу элементов σd_s^{va} при $s=\overline{\tau^{va},r-1}$ введем положительные функции $\zeta_s^{va} = (2r - 2s - 1)(2ns + v + 1).$

Покажем методом математической индукции, что
$$\sigma d_s^{va} \geq \zeta_s^{va}$$
 при $s=\overline{\tau^{va}},r-1$. В (9) $\sigma d_1^{va} = 4nr + 4vr + 6r - 6n - 3v - 3 > 4nr + 2vr + 2r - 6n - 3v - 3 = \zeta_1^{va}$ $(v=\overline{0,2n-3}),$ $\sigma d_0^{va} = 4rv + 6r - 4rn - 4n + v + 3 \geq 2vr + 2r - v - 1 = \zeta_0^{va}$ $(v=2n-2,2n-1).$

Пусть для некоторого $s-1=\overline{\tau^{va},r-2}$ верно неравенство $\sigma d^{va}_{s-1} \geq \zeta^{va}_{s-1}$. Тогда согласно (9) имеем $\sigma d_s^{va} = \sigma b_s^{va} - a_s^{va} c_{s-1}^{va} (\sigma d_{s-1}^{va})^{-1} \ge (2r-2s)(4ns-2n+2v+3) + (2r-2s)(4ns-2n+2v+3)$ $2ns - 4n + v + 3 - (2r - 2s + 2)(2ns - 2n + v + 2) = \zeta_s^{va}.$

Для оценки сверху элементов σd_s^{va} при $s=\overline{\tau^{va},r}$ введем функции $\eta_s^{va}=\{(2r-$ (2s)(2ns+2v+3) при $v=\overline{0,2n-3};\ (2r-2s)(2ns+v+4)$ при v=2n-2,2n-1.

Покажем методом математической индукции, что $\sigma d_s^{va} < \eta_s^{va}$ при $s = \overline{\tau^{va} + 1, r}$.

$$\frac{\mathrm{B}\;(9)\;\sigma d_1^{va}=4nr+4vr+6r-6n-3v-3\leq 4nr+4vr+6r-4n-4v-6=\eta_1^{va}\;\;(v=0,2n-3),\;\sigma d_0^{va}=4rv+6r-4rn-4r+v+3<2vr+8r=\eta_0^v\;\;(v=2n-2,2n-1).$$

Пусть для некоторого $s-1=\overline{\tau^{va},r-1}$ верно неравенство $\sigma d_{s-1}^{va}\leq \eta_{s-1}^{va}$. Тогда согласно (9) имеем $\sigma d_s^{va}=\sigma b_s^{va}-a_s^{va}c_{s-1}^{va}(\sigma d_{s-1}^{va})^{-1}\leq \sigma b_s^{va}-a_s^{va}c_{s-1}^{va}(\eta_{s-1}^{va})^{-1},$ а так как $\eta_{s-1}^{va}>0$, достаточно доказать, что $a_s^{va}c_{s-1}^{va}>\eta_{s-1}^{va}(\sigma b_s^{va}-\eta_s^{va})$, что равносильно верным неравенствам $(2r-2s+1)(v^2+3v+2)+(2n-v-3)(2ns-2n+2v+3)>0$ $(v = \overline{0, 2n - 3}) \text{ if } 6(2r - 2s + 1) + (2n - 4)(2ns - 2n + v + 4) > 0 \ \ (v = 2n - 2, 2n - 1). \ \ \Box$

Теперь согласно формулам (9) имеем

$$\overline{Y}_{0,s}^{va} = \sum_{m=1}^{s} \theta_{s,m}^{va} Y_{0,m}^{va}, \quad \theta_{s,m}^{va} = (-1)^{s-m} \prod_{j=m+1}^{s} (a_j^{va}/d_{j-1}^{va}) \qquad (s \ge 1).$$
 (10)

В результате система (8) равносильна системе

$$c_0^{va}h_{1,1}^{va} = Y_{0,0}^{va} \quad (v = \overline{0,2n-3}), \qquad \overline{A}^{va}h_1^{va} = \overline{Y}_0^{va} \quad (v = \overline{0,2n-1}), \tag{11}$$

в которой \overline{A}^{va} — квадратная двухдиагональная матрица с элементами d_s^{va} и c_s^{va} на диагоналях, $\overline{Y}_0^{va} = (\overline{Y}_{0,\tau^{va}}^{va}, \overline{Y}_{0,\tau^{va}+1}^{va}, \dots, \overline{Y}_{0,r}^{va})$, компоненты $\overline{Y}_{0,s}^{va}$ определены в (10).

4. Совместность связующей системы в случае a. При v=2n-2,2n-1(11) совместна, так как уравнение (11₁) отсутствует, а $\det \overline{A}^{va} \neq 0$ по лемме 1.

Пусть теперь $v=\overline{0,2n-3}$. Введем $A^{va}_{s,1}$ — алгебраическое дополнение матрицы \overline{A}^{va} и Δ^{va} — ее определитель. Имеем

$$A^{va}_{s,1}=(-1)^{s+1}\prod_{j=1}^{s-1}c^{va}_{j}\prod_{j=s+1}^{r}d^{va}_{j},\quad \Delta^{va}=\prod_{j=1}^{r}d^{va}_{j}
eq 0$$
 при $r>1.$

Тогда по формуле Крамера в (11₂) $\Delta^{va}h^{va}_{1,1}=\sum_{s=1}^r A^{va}_{s,1}\overline{Y}^{va}_{0,s}$. Подставляя $h^{va}_{1,1}$ в (11₁), в силу (10) имеем $0=\sum_{s=1}^r A^{va}_{s,1}\overline{Y}^{va}_{0,s}-(\Delta^{va}/c^{va}_0)Y^{va}_{0,0}=$ $\sum_{s=1}^r A_{s,1}^{va} \left(\sum_{m=1}^s \theta_{s,m}^{va} Y_{0,m}^{va}\right) - (\Delta^{va}/c_0^{va}) Y_{0,0}^{va}$ или

$$\sum_{m=0}^{r} \gamma_{m}^{va} Y_{0,m}^{va} = 0, \quad \gamma_{0}^{va} = -\Delta^{va} / c_{0}^{va}, \quad \gamma_{m}^{va} = \sum_{s=m}^{r} A_{s,1}^{va} \theta_{s,m}^{va} \quad (m = \overline{1,r}).$$
 (12)

Лемма 2. Множители γ_m^{va} из (12) представимы в виде

$$\gamma_m^{va} = \phi_m^{va} \psi_m^{va} \in \mathbb{Z} \quad (m = \overline{1, r}), \tag{13}$$

 $\begin{array}{ll} \textit{ede} \ \ \phi_m^{va} = (-1)^{m+1} \prod_{j=1}^{m-1} c_j^{va} \neq 0 \quad (m=\overline{r,1}); \quad \psi_r^{va} = 1, \ \ \psi_{r-1}^{va} = b_r^{va}, \ \ \psi_{m-1}^{va} = b_m^{va} \psi_m^{va} - a_{m+1}^{va} \underline{c}_m^{va} \psi_{m+1}^{va} \quad (m=\overline{r-1,2}). \end{array}$

Доказательство. Покажем, что для констант ψ_m^{va} справедлива прямая формула

$$\psi_m^{va} = \sum_{s=m}^r \prod_{i=m}^{s-1} c_j^{va} \prod_{j=s+1}^r d_j^{va} \prod_{j=m+1}^s (a_j^{va}/d_{j-1}^{va}) \qquad (m = \overline{r, 1}).$$
 (14)

В (14) $\psi^{va}_r = \sum_{s=r}^r 1 = 1, \psi^{va}_{r-1} = \sum_{s=r-1}^r \prod_{j=r-1}^{s-1} c^{va}_j \prod_{j=s+1}^r d^{va}_j \prod_{j=r}^s (a^{va}_j/d^{va}_{j-1}) = d^{va}_r + a^{va}_r c^{va}_{r-1}/d^{va}_{r-1} = b^{va}_r$ согласно (9), что совпадает с (13) и дает базу индукции.

Пусть для всех $s=\overline{m,r}$ верно равенство (14). Тогда согласно (13) и (9) имеем Пусть для всех s = m, r верно равенство (14). Гогда согласно (13) и (9) имеем $\psi_{m-1}^{va} = b_m^{va} \psi_m^{va} - a_{m+1}^{va} c_m^{va} \psi_{m+1}^{va} = b_m^{va} \sum_{s=m}^r \prod_{j=m}^{s-1} c_j^{va} \prod_{j=s+1}^r d_j^{va} \prod_{j=m+1}^s (a_j^{va}/d_{j-1}^{va}) - a_{m+1}^{va} c_m^{va} \sum_{s=m+1}^r \prod_{j=m+1}^{s-1} c_j^{va} \prod_{j=s+1}^r d_j^{va} \prod_{j=m+2}^s (a_j^{va}/d_{j-1}^{va}) = (d_m^{va} + a_m^{va} c_{m-1}^{va}/d_{m-1}^{va}) \times \sum_{s=m}^r \prod_{j=m}^{s-1} c_j^{va} \prod_{j=s+1}^r d_j^{va} \prod_{j=m+1}^s (a_j^{va}/d_{j-1}^{va}) - d_m^{va} \sum_{s=m+1}^r \prod_{j=m}^{s-1} c_j^{va} \prod_{j=s+1}^r d_j^{va} \times \sum_{s=m+1}^r \prod_{j=m+1}^{s-1} c_j^{va} \prod_{j=s+1}^r d_j^{va} \times \sum_{s=m+1}^r \prod_{j=m+1}^r c_j^{va} \prod_{j=s+1}^r d_j^{va} \times \sum_{s=m+1}^r \prod_{j=m+1}^r c_j^{va} \prod_{j=s+1}^r d_j^{va} \times \sum_{s=m+1}^r \prod_{j=m+1}^r c_j^{va} \prod_{j=s+1}^r d_j^{va} \times \sum_{s=m+1}^r c_j^{va} \prod_{j=s+1}^r c_j^{$ $\times \prod_{j=m+1}^{s} (a_{j}^{va}/d_{j-1}^{va}) = \sum_{s=m-1}^{r} \prod_{\substack{j=m-1\\j \geq s}}^{s-1} c_{j}^{va} \prod_{j=s+1}^{r} d_{j}^{va} \prod_{j=m}^{s} (a_{j}^{va}/d_{j-1}^{va}).$ Теперь с учетом равенств (12) и (10) получаем

$$\gamma_m^{va} = \sum_{s=m}^r A_{s,1}^{va} \theta_{s,m}^{va} = \sum_{s=m}^r (-1)^{s+1} \prod_{j=1}^{s-1} c_j^{va} \prod_{j=s+1}^r d_j^{va} (-1)^{s-m} \prod_{j=m+1}^s (a_j^{va}/d_{j-1}^{va}) = \phi_m^{va} \psi_m^{va}.$$

Перейдем от коэффициентов $Y_{0,m}^{va}$ к коэффициентам $Y_{1,m}^{va}$ и $Y_{2,m}^{va}$

В равенстве (12) согласно формулам (7): $\sum_{m=1}^{r-1} \gamma_m^{va} (\sigma(2r-2m+1)Y_{1,m-1}^{va}+(2nm+v+1)Y_{1,m}^{va}+Y_{2,m}^{va}) + \gamma_0^{va} ((v+1)Y_{1,0}^{va}+Y_{2,0}^{va}) + \gamma_r^{va} (\sigma Y_{1,r-1}^{va}+Y_{2,r}^{va}) = 0$. Отсюда получаем гарантирующую совместность системы (11) резонансную связь

$$v = \overline{0, 2n - 3}: \sum_{m=0}^{r-1} \left(\alpha_m^{va} Y_{1,m}^{va} + \beta_m^{va} Y_{2,m}^{va} \right) + \beta_r^{va} Y_{2,r}^{va} = 0, \tag{15}$$

где $\alpha_m^{va} = (2nm + v + 1)\gamma_m^{va} + \sigma(2r - 2m - 1)\gamma_{m+1}^{va} \quad (m = \overline{0, r - 1}), \ \beta_m^{va} = \gamma_m^{va} \quad (m = \overline{0, r}),$

5. Структура связующей системы в случае b. Положим для краткости $h_{1,s}^{vb} = h_1^{[2n(s-1)+v+n+2,2n(r-s-1)+n]}$ $(s=\overline{\tau^{vb},r-1})$, где $\tau^{vb} = \{1$ при $v=\overline{0,n-3};$ 0 при $v=\overline{n-2,2n-1}\};$ $h_{2,s}^{vb} = h_2^{[2ns+v+n+1,2n(r-s-1))]},$ $Y_{1,s}^{vb} = \widehat{Y}_1^{[2ns+v+n+1,2n(r-s-1)]}$ $(s=\overline{\tau_1^{vb},r-1});$ $Y_{2,s}^{vb} = \widehat{Y}_2^{[2ns+v+n,2n(r-s-1)+n]}$ $(s=\overline{\tau_2^{vb},r-1})$. Тогда (5) примет вид

$$\sigma(2r-2s-1)h_{1,s}^{vb} + (2ns+v+n+2)h_{1,s+1}^{vb} - h_{2,s}^{vb} = Y_{1,s}^{vb} \quad (s = \overline{\tau_1^{vb}, r-1}), \\ \sigma(2r-2s)h_{2,s-1}^{vb} + (2ns+v+n+1)h_{2,s}^{vb} - (2n-1)\sigma h_{1,s}^{vb} = Y_{2,b}^{vb} \quad (s = \overline{\tau_2^{vb}, r-1}).$$
 (16)

Подставляя $h_{2,s-1}^{vb}$ и $h_{2,s}^{vb}$ из (16_1) в (16_2) , получаем трехдиагональную систему

$$a_s^{vb}h_{1,s-1}^{vb} + b_s^{vb}h_{1,s}^{vb} + c_s^{vb}h_{1,s+1}^{vb} = Y_{0,s}^{vb} \qquad (s = \overline{\tau_2^{vb}, r-1} \), \tag{17}$$

в которой

в которой
$$a_s^{vb}=(2r-2s)(2r-2s+1) \quad (s=\overline{\tau^{vb}+1,r}),$$

$$b_s^{vb}=\sigma((2r-2s-1)(4ns+2v+3)+2ns+v-3n+3) \quad (s=\overline{\tau^{vb},r-1}),$$

$$c_s^{vb}=(2ns+v+n+1)(2ns+v+n+2) \quad (s=\overline{\tau^{vb}-1,r-1});$$

$$Y_{0,s}^{vb}=\sigma(2r-2s)Y_{1,s-1}^{vb}+(2ns+v+n+1)Y_{1,s}^{vb}+Y_{2,s}^{vb} \quad (s=\overline{\tau_2^{vb},r-1}).$$
 Введем
$$Y_{0,-1}^{n-2b},Y_{0,-1}^{n-1b}=0, \text{ тогда } (17) \text{ можно рассмотреть для } s=\overline{\tau^{vb}-1,r-1}$$
 при всех $v=\overline{0},2n-1$, так как $c_{-1}^{n-2b},c_{-1}^{n-1b}=0,$ и записать ее в матричном виде

$$A^{vb}h_1^{vb} = Y_0^{vb}, (18)$$

где матрица
$$A^{vb} = \begin{pmatrix} c^{vb}_{\tau^{vb}-1} & 0 & 0 & \dots & 0 \\ b^{vb}_{\tau^{vb}} & c^{vb}_{\tau^{vb}} & 0 & \dots & 0 \\ a^{vb}_{\tau^{vb}+1} & b^{vb}_{\tau^{vb}+1} & c^{vb}_{\tau^{vb}+1} & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & a^{vb}_{r-2} & b^{vb}_{r-2} & c^{vb}_{r-2} \\ 0 & \dots & 0 & a^{vb}_{r-1} & b^{vb}_{r-1} \end{pmatrix}_{(r-\tau^{vb}+1)\times(r-\tau^{vb})},$$

 $h_1^{vb} = (h_{1,\tau^{vb}}^{vb}, \dots, h_{1,r-1}^{vb}), \, Y_0^{vb} = (Y_{0,\tau^{vb}-1}^{vb}, \dots, Y_{0,r-1}^{vb}), \, Y_0^{vb} = (Y_{0,\tau^{vb}-1}^{vb}, \dots, Y_{0,\tau^{vb}-1}^{vb}), \, Y_0^{vb} = (Y_{0,\tau^{vb}-1}^{vb}$

Методом Гаусса в A^{vb} аннулируем элементы $c^{vb}_{r-2}, c^{vb}_{r-3}, \ldots$, получая d^{vb}_s вместо b^{vb}_s и $\overline{Y}^{vb}_{0,s}$ вместо $Y^{vb}_{0,s}$, пока $d^{vb}_{s+1} \neq 0 \ \ (s \geq \tau^{vb}+1)$, используя рекуррентные формулы

$$\begin{aligned} &d_{r-1}^{vb} = b_{r-1}^{vb}, \quad \overline{Y}_{0,r-1}^{vb} = Y_{0,r-1}^{vb}; \\ &d_{s}^{vb} = b_{s}^{vb} - \frac{a_{s+1}^{vb} c_{s}^{vb}}{d_{s+1}^{vb}}, \quad \overline{Y}_{0,s}^{vb} = Y_{0,s}^{vb} - \frac{\overline{Y}_{0,s+1}^{vb} c_{s}^{vb}}{d_{s+1}^{vb}} \quad (s = r-2, \ r-3, \ \ldots). \end{aligned} \tag{19}$$

Пемма 3. Для элементов d_s^{vb} из (19) верна следующая прямая формула:

$$d_s^{vb} = \sigma(2r - 2s + 1)(2ns + v - n + 2) \qquad (s = \overline{r - 1, \tau^{vb}}). \tag{20}$$

Доказательство. В (20) $d_{r-1}^{vb} = 3\sigma(2nr+v-3n+2)$, что совпадает с d_{r-1}^{vb} из (19) и дает базу индукции. Пусть для некоторого $s+1=\overline{r,\tau^{vb}+1}$ верна формула (20). Тогда согласно (19) $d_s^{vb} = b_s^{vb} - a_{s+1}^{vb} c_s^{vb} (d_{s+1}^{vb})^{-1} = \sigma((2r-2s-1)(4ns+2v+3)+2ns+v-3n+3-(2r-2s-2)(2ns+v+n+1)) = \sigma(2r-2s+1)(2ns+v-n+2).$

Следствие 1. B формуле (20) все элементы $d_s^{vb} \neq 0$, кроме $d_0^{m-2b} = 0$.

В результате система (18) равносильна системе

$$\overline{A}^{vb}h_1^{vb} = \overline{Y}_0^{vb}, \tag{21}$$

в которой \overline{A}^{vb} — двухдиагональная $(r-\tau^{vb}+1)\times (r-\tau^{vb})$ -матрица с элементами d_s^{vb} и a_s^{vb} на диагоналях и нулевой первой строкой, а $\overline{Y}_0^{vb}=(\overline{Y}_{0,\tau^{vb}-1}^{vb},\overline{Y}_{0,\tau^{vb}}^{vb},\dots,\overline{Y}_{0,r-1}^{vb})$ и $\overline{Y}_{0,s}^{vb}$ определены в (19), кроме $\overline{Y}_{0,-1}^{n-2b},\overline{Y}_{0,-1}^{n-1b}$, которые введем равными нулю.

6. Совместность связующей системы в случае *b***. Согласно следствию 1 из формул (19) с использованием (17), (20) и (7) получаем:**

$$\overline{Y}_{0,0}^{vb} = \sum_{m=0}^{r-1} \theta_m^{vb} Y_{0,m}^{vb}, \quad \theta_m^{vb} = (-1)^m \prod_{j=1}^m (e_{j-1}^{vb}/d_j^{vb}) \neq 0.$$
 (22)

Выразим коэффициент $\overline{Y}_{0,0}^{vb}$ через коэффициенты $Y_{1,m}^{vb}$ и $Y_{2,m}^{vb}$ из системы (17): $\overline{Y}_{0,0}^{vb} = \sum_{m=0}^{r-1} \theta_m^{vb} Y_{0,m}^{vb} = \sum_{m=0}^{r} \theta_m^{vb} (\sigma(2r-2m)) Y_{1,m-1}^{vb} + (2nm+v+n+1) Y_{1,m}^{vb} + Y_{2,m}^{vb}) = -\sigma \sum_{m=0}^{r-2} (4r-4m-3) \theta_{m+1}^{vb} Y_{1,m}^{vb} + \theta_{r-1}^{vb} Y_{1,r-1}^{vb} + \sum_{m=0}^{r-1} \theta_m^{vb} Y_{2,m}^{vb}.$ При этом имеем $2\sigma(r-m+1) \theta_{m+1}^{vb} + (2nm+v+n+1) \theta_m^{vb} = -\sigma(4r-4m-3) \theta_{m+1}^{vb} \quad (m=\overline{0,r-2}).$ Пусть $v=\overline{0,n-2}$. Тогда в системе (21) при s=0 получаем уравнение $0=\overline{0,r-2}$

Пусть $v=\overline{0,n-2}$. Тогда в системе (21) при s=0 получаем уравнение $0=\overline{Y}_{0,0}^{vb}$, причем, если v=n-2, то это уравнение имеет вид $0\cdot h_{1,0}^{n-2\,b}=\overline{Y}_{0,0}^{n-2\,b}$ и в (21) возникает еще тривиальное уравнение при s=-1 вида 0=0. Возвращаясь от системы (21) к (16) и используя (22), выпишем обеспечивающую совместность системы (16) резонансную связь:

$$v = \overline{0, n - 2}: \sum_{m=0}^{r-1} \left(\alpha_m^{vb} Y_{1,m}^{vb} + \beta_m^{vb} Y_{2,m}^{vb} \right) = 0, \tag{23}$$

где $\alpha_m^{vb}=-\sigma(4r-4m-3)\theta_{m+1}^{vb}$ $(m=\overline{0,r-2}),~\alpha_{r-1}^{vb}=\theta_{r-1}^{vb},~\beta_m^{vb}=\theta_m^{vb}$ $(m=\overline{0,r-1});$ $\theta_m^{vb}\neq 0$ из (22), причем коэффициент $h_{1,0}^{n-2\,b}$ не имеет ограничений.

При v=n-1 система (21) однозначно разрешима, так как $d_0^{n-1\,b} \neq 0$.

Пусть теперь $v=\overline{n,2n-1}$. Тогда первое уравнение системы (21) (s=-1) имеет вид $0=\overline{Y}_{0,-1}^{vb}$. Согласно (19) $\overline{Y}_{0,-1}^{vb}=Y_{0,-1}^{vb}-\overline{Y}_{0,0}^{vb}c_{-1}^{vb}(d_0^{vb})^{-1}=(v-n+1)Y_{1,0}^{vb}+Y_{2,-1}^{vb}-\sigma(v-n+1)(2r+1)^{-1}\big(-\sigma\sum_{m=0}^{r-2}(4r-4m-3)\theta_{m+1}^{vb}Y_{1,m}^{vb}+\theta_{r-1}Y_{1,r-1}^{vb}+\sum_{m=0}^{r-1}\theta_m^{vb}Y_{2,m}^{vb}\big),$ что позволяет, возвращаясь к системе (16), выписать для нее резонансную связь

$$v = \overline{n, 2n - 1}: \sum_{m = -1}^{r - 1} \left(\alpha_m^{vb} Y_{1,m}^{vb} + \beta_m^{vb} Y_{2,m}^{vb} \right) = 0, \tag{24}$$

в которой $\alpha_{-1}^{vb}=v-n+1,\ \alpha_m^{vb}=(v-n+1)(2r+1)^{-1}(4r-4m-3)\theta_{m+1}^{vb}\ (m=\overline{0,r-2}),$ $\alpha_{r-1}^{vb}=-\sigma(v-n+1)(2r+1)^{-1}\theta_{r-1}^{vb};\ \beta_{-1}^{vb}=1,\ \beta_m^{vb}=-\sigma(v-n+1)(2r+1)^{-1}\theta_m^{vb}$ $(m=\overline{0,r-1});\ \theta_m^{vb}\neq 0$ из (22).

7. Резонансные уравнения и резонансные наборы. Запишем найденные резонансные связи через коэффициенты системы (3), используя обозначения, введенные для системы (5) и полученных из нее систем (6) и (16).

Для $\forall k = 2nr + v - n \ (r \ge 1, v = \overline{0, 2n - 1}, n \ge 2)$ в случае a из (15) получаем резонансное уравнение, связывающее следующие коэффициенты КОМ $Y^{[k]}$:

$$\sum_{m=0}^{r-1} \left(\alpha_m^{va} Y_1^{[2nm+v+1, \, 2n(r-m-1)+n]} + \beta_m^{va} Y_2^{[2nm+v, 2n(r-m)]} \right) + \beta_r^{va} Y_2^{[2nr+v, 0]} = \tilde{c}_r^{va} \quad (25)$$

для значений $v \in \{\overline{0,2n-3}\}$, где множители α_m^{va} и β_m^{va} определены в (15), число $\tilde{c}_r^{va} = \sum_{m=0}^{r-1} \left(\alpha_m^{va} \widetilde{Y}_1^{[2nm+v+1,2n(r-m-1)+n]} + \beta_m^{va} \widetilde{Y}_2^{[2nm+v,2n(r-m)]}\right) + \beta_r^{va} \widetilde{Y}_2^{[2nr+v,0]}$ уже известно, что пояснялось в (4).

В случае b, объединяя связи (23) и (24), существующие при различных значениях v, получаем резонансное уравнение с другими коэффициентами КОМ $Y^{[k]}$:

$$\sum_{m=\tau_2^{vb}}^{r-1} \left(\alpha_m^{vb} Y_1^{[2nm+v+n+1, 2n(r-m-1)]} + \beta_m^{vb} Y_2^{[2nm+v+n, 2n(r-m-1)+n)]} \right) = \tilde{c}_r^{vb}$$
 (26)

для $v\in\{\overline{0,n-2};\overline{n,2n-1}\}$, где множители α_m^{vb} и β_m^{vb} определены в (23) и в (24), $\tau_2^{vb}=\{0$ при $v=\overline{0,n-1};\ -1$ при $v=\overline{n,2n-1}\},\ \tilde{c}_r^{vb}$ аналогично $\tilde{c}_r^{va};$ при этом при v=n-2 коэффициенты $h_1^{[0,2nr-n]}$ КОМ $h_1^{[2nr-n-1]}$ в замене (2) произвольны.

В частности, при r=1 резонансные уравнения после упрощения принимают вид

$$(2n-1)Y_1^{[v+1,n]} + (2n-v-3)(v+1)^{-1}Y_2^{[v,2n]} + \sigma(v+2)Y_2^{[2n+v,0]} = \tilde{c}_1^{va}$$

$$(v=\overline{0,2n-3});$$

$$(v+n+1)Y_1^{[v+n+1,\,0]}+Y_2^{[v+n,\,n]}=\tilde{c}_1^{vb}\quad (v=\overline{0,n-2})$$

$$3\sigma Y_1^{[v-n+1,\,2n]} - (v+n+1)Y_1^{[v+n+1,\,0]} + 3\sigma(v-n+1)^{-1}Y_2^{[v-n,\,3n]} - Y_2^{[v+n,\,n]} = \tilde{c}_1^{vb}$$

$$(v=\overline{n,2n-1}). \quad (27)$$

Для $\forall k \geq n$ наборы коэффициентов КОМ $Y^{[k]}$, входящие в уравнения (25) и (26), не пересекаются. Кроме того, коэффициент является резонансным, если реально входит в одно из уравнений, т.е. множители α или β при нем отличны от нуля.

При r=1, очевидно, все коэффициенты в резонансных уравнениях (27) резонансные, кроме коэффициента $Y_2^{[v,2n]}$ с v=2n-3, имеющего в (27_1) нулевой множитель.

Лемма 4. При $r \geq 2$ в резонансном уравнении (25) заведомо не равны нулю мно-

жители α_{r-1}^{va} , β_0^{va} , β_{r-1}^{va} , β_r^{va} ; α_m^{va} $(m=\overline{0,r-2})$, β_m^{va} $(m=\overline{1,r-2})$ при четных v; β_{r-2}^{va} при n, кратных 3. B уравнении (26) все α_m^{vb} и β_m^{vb} отличны от нуля. Доказательство. Очевидно, что отличны от нуля $\alpha_{r-1}^{va} = \sigma(-1)^r(-2n+1)(2nr-2n+v+1)\prod_{j=1}^{r-2}c_j^{va}$, $\beta_0^{va} = -\Delta^{va}/c_0^{va}$, $\beta_{r-1}^{va} = (-1)^{r-1}b_r^{va}\prod_{j=1}^{r-2}c_j^{va}$, $\beta_r^{va} = (-1)^{r-1}b_r^{va}\prod_{j=1}^{r-2}c_j^{va}$, $\beta_r^{va} = (-1)^{r-1}b_r^{va}$ $(-1)^r \prod_{j=1}^{r-1} c_j^{va}$.

Согласно (7) все a_m^{va} четны, а все b_m^{va} нечетны при четных v. В этом случае в (13) все ψ_m^{va} нечетны и, тем самым, отличны от нуля. А значит, $\beta_m^{va} = \gamma_m^{va} = \phi_m^{va} \psi_m^{va} \neq 0$. Теперь с учетом (12) в (15) при m=0: $\alpha_0^{va} = (-(v+1)\Delta^{va} + c_0^{va}\sigma(2r-1)\gamma_1^{va})/c_0^{va}$.

Поскольку в (7) все a_m^{va} и c_m^{va} — четные, а b_m^{va} — нечетные при четных v, A^{va} из (8) имеет нечетный определитель, совпадающий с определителем Δ^{va} матрицы \overline{A}^{va} из (11). В результате произведение $(v+1)\Delta^{va}$ нечетно, c_0^{va} — четно и γ_1^{va} — целое, откуда $\alpha_0^{va} \neq 0$. При $m=\overline{1,r-2}$ в (15) $\alpha_m^{va}=(2nm+v+1)\gamma_m^{va}+\sigma(2r-2m-1)\gamma_{m+1}^{va}=(2nm+v+1)\phi_m^{va}\psi_m^{va}+\sigma(2r-2m-1)\phi_{m+1}^{va}\psi_{m+1}^{va}=\phi_m^{va}((2nm+v+1)\psi_m^{va}-\sigma(2r-2m-1)c_m^{va}\psi_{m+1}^{va}).$

Поскольку c_m^{va} четно, второй множитель нечетен и, тем самым, отличен от нуля, как и первый множитель. Следовательно $\alpha_m^{va} \neq 0$.

Из (13), (15) $\beta_{r-2}^{va} = \phi_{r-2}^{va} \psi_{r-2}^{va}$, причем $\phi_{r-2}^{va} \neq 0$. Учитывая (14), вычислим $\psi_{r-2}^{va} = r(12n^2r + 12nv + 36n - 60n^2) + v(-30n + 3v + 18) - 78n + 64n^2 + 23$. Очевидно, что если n кратно трем, то кратны трем все слагаемые, кроме последнего, а значит, ψ_{r-2}^{va} не делится на три и не обращается в нуль, поэтому и $\beta_{r-2}^{va} \neq 0$.

Утверждение относительно множителей в уравнении (26) очевидно. \square

Для $\forall \, k=2nr+v-n$ введем в рассмотрение число $n_k=\{1$ при k=2nr-1, 2nr+n-2, 2nr+n-1; 2 при $k\in K_n^r\}$, где $K_n^r=\{\overline{2nr-n, 2nr-2}, \overline{2nr, 2nr+n-3}\}.$

Следствие 2. В системе (3) для $\forall k = 2nr + v - n$ $(r \ge 1, v = \overline{0, 2n - 1})$ n_k резонансных коэффициентов КОМ $Y^{[k]}$ образуют резонансный k-набор \mathcal{Y}^k , если один коэффициент входит в (25) или (26), а второй при $n_k = 2 - в$ другое уравнение.

Следствие 3. В любых идущих подряд 2n резонансных k-наборах \mathcal{Y}^k , $\epsilon de k = 2nr - n, 2nr + n - 1$ (r > 1), содержатся ровно 4n - 3 резонансных коэффициента.

Замечание 1. В резонансном уравнении (25) не удалось доказать отличие от нуля множителей $\alpha_m^{2l-1\,a}$, $\beta_m^{2l-1\,a}$ ($m=\overline{1,r-2}$) и $\alpha_0^{2l-1\,a}$ с $l=\overline{1,n-1}$, однако при необходимости любой такой множитель можно вычислить по указанным выше формулам. В частности, вычисленные при помощи программы Maple множители $\beta_m^{va} \neq 0$ для всех $n=\overline{2,10}$, $r=\overline{2,20}$, $v=1,3,\ldots 17$, $m=\overline{1,r-2}$.

8. Полученные результаты. В итоге оказались доказаны две теоремы.

Теорема 1. Для того чтобы система (3) была формально эквивалентна исходной системе (1), необходимо и достаточно, чтобы коэффициенты ее $KOM Y^{[k]}$ при k=2nr-1 (v=n-1) удовлетворяли уравнению (25), при k=2nr+n-2, 2nr+n-1 (v=2n-2, 2n-1) — уравнению (26), а при $k\in K_n^r$ $(v=\overline{0}, n-\overline{2}; n, 2n-\overline{3})$ — обоим резонансным уравнениям.

Очевидно, что для всякого $k \ge n$ уравнения (25) и (26) можно однозначно разрешить относительно n_k коэффициентов из любого резонансного k-набора \mathcal{Y}^k .

Теперь, если в системе (3) положить равными нулю все коэффициенты, кроме коэффициентов, входящих в выбранный резонансный набор $\mathcal{Y} = \bigcup_{k=n}^{\infty} \mathcal{Y}^k$, то по определению система (3) будет ОНФ с заданной структурой \mathcal{Y} .

Теорема 2. Зафиксируем произвольный резонансный набор \mathcal{Y} , образованный резонансными k-наборами, из следствия 2. Тогда существует и единственна почти тождественная замена (2) с заранее выбранными коэффициентами $h_1^{[0,2nr-n]}$, преобразующая систему (1) в $OH\Phi$ (3), структура которой порождена \mathcal{Y} .

В частности, из системы (1) всегда могут быть получены $OH\Phi$ (3), имеющие следующие структуры:

$$\dot{y_1} = y_2, \ \dot{y_2} = \sigma y_1^{2n-1} + y_2 \sum_{\substack{k=n\\k \neq 2nl-1}}^{\infty} Y_2^{(k,1)} y_1^k + \sum_{\substack{k=2n\\k \neq 2nl-j}}^{\infty} Y_2^{(k,0)} y_1^k \quad (\forall l \in \mathbb{N}, \ \forall j = 1, 2), \ (28)$$

где первая компонента возмущения— нулевая, а вторая— линейна по y_2 ;

$$\dot{y_1} = y_2 + \sum_{\substack{k=n+1\\k \neq 2nl}}^{\infty} Y_1^{(k,0)} y_1^k, \quad \dot{y_2} = \sigma y_1^{2n-1} + \sum_{\substack{k=2n\\k \neq 2nl-j}}^{\infty} Y_2^{(k,0)} y_1^k \quad (\forall l \in \mathbb{N}, \ \forall j = 1, 2), \ (29)$$

а здесь возмущение не зависит от переменной y_2 .

Интересно сравнить полученные ОНФ с нормальной формой Белицкого [3], также выписанной для системы (1):

$$\dot{y}_1 = y_2 + y_1 g_1(y_1), \ \dot{y}_2 = y_2 g_2(y_1) + h(y_1),$$
 (30)

где
$$g_i = \sum_{k=n}^{\infty} g_i^{(k)} y_1^k$$
, $g_1 \equiv g_2$, $h = \sum_{k=2n-1}^{\infty} h^{(k)} y_1^k$, $h^{(2n-1)} = \sigma$.

где $g_i=\sum_{k=n}^\infty g_i^{(k)}y_1^k,\,g_1\equiv g_2,\,h=\sum_{k=2n-1}^\infty h^{(k)}y_1^k,\,h^{(2n-1)}=\sigma.$ Сводя (30) к ОНФ (28) можно добиться, чтобы $g_1\equiv 0$ и в рядах g_2,h была аннулирована известная часть слагаемых. А при сведении НФ Белицкого (30) к ОНФ (29) удается аннулировать ряд g_2 и часть слагаемых в g_1, h .

Указанные упрощения достигаются за счет того, что слагаемое σx_1^{2n-1} , отнесенное при приведении системы (1) к НФ Белицкого к возмущению, вводится в невозмущенную часть при получении ОНФ.

Литература

- 1. Басов В. В. Обобщенная нормальная форма и формальная эквивалентность систем дифференциальных уравнений с нулевыми характеристическими числами // Дифференциальные уравнения. 2003. Т. 39, № 2. С. 154–170.
- 2. Васов В.В., Михлин Л.С. Обобщенные нормальные формы систем ОДУ с линейнокубической невозмущенной частью // Дифференциальные уравнения и процессы управления. 2012. T. 2. C. 129-153.
- 3. Беличкий Γ . P. Нормальные формы формальных рядов и ростков C^{∞} -отображений относительно действия группы // Изв. АН СССР. Сер. матем. 1976. Т. 40, № 4. С. 858.

Статья поступила в редакцию 23 октября 2014 г.

Сведения об авторах

Басов Владимир Владимирович — кандидат физико-математических наук, доцент; vlvlbasov@rambler.ru

Михлин Леонид Станиславович — аспирант; mikhlin@bk.ru

GENERALIZED NORMAL FORMS OF ODE SYSTEMS WITH UNPERTURBED PART $(x_2,\pm x_1^{2n-1})$

Vladimir V. Basov, Leonid S. Mikhlin

St. Petersburg State University, Universitetskaya nab., 7-9, St. Petersburg, 199034,

Russian Federation; vlvlbasov@rambler.ru, mikhlin@bk.ru

Two-dimensional autonomous ODE systems with $(x_2, \pm x_1^{2n-1})$ $(n \ge 2)$ as the unperturbed part are reduced by formal invertible transformation to generalized normal forms with all possible structures. Refs 3.

Keywords: generalized normal form, quasihomogeneous polynomials, resonance equations.

References

- 1. Basov V. V., "Generalized normal forms and formal equivalence of systems of differential equations with zero eigenvalues", Differential Equations 39(2), 165-181 (2003).
- 2. Basov V.V., Mikhlin L.S., "Generalized normal forms of systems of ODE with linear-cubic unperturbed part", Differential equations and control processes 2, 129–153 (2012) [in Russian]. (Electronic J., http://www.math.spbu.ru/diffjournal)
- 3. Belickii G.R., "Normal forms for formal series and germs of C^{∞} -mappings with respect to the action of a group", Mathematics of the USSR-Izvestiya 10(4), 855–868 (1976).