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Ms1 obcy»kgaeM aHATHUTHYECKYIO CTPYKTYPy TOYHOI'O BBIPAsKEHHUsI JJIsi BEPOATHOCTH pa3ope-
HUsI B KJytaccudeckoit moznenn Kpamepa—Jlynabepra ¢ mckaMu, paclpefiesIeHHbIMU 110 DPJIaHry. DTa
dopMysta MOKET OBITH JIETKO MOJIydeHa CTAHJAPTHLIM METOAOM Ipeobpasosamus Jlammaca. Oxmnako
ee TOHKasl CTPYKTypPa 3aBHUCHUT CYIIECTBEHHBIM O0OpPa3oM OT OTCYTCTBUsl (HAJIMYMsI) KPATHBIX KOD-
Heil y HEKOTOPOI'o IIOJIMHOMUAJIBHOTO ypaBHEHH:A. Mbl JOKa3bIBaeM, YTO BCE KOPHU STOTO ypPaBHEHU
npocrble (MMEIT KpaTHOCTh OfuH). Kak CilefcTBUe, BEPOSTHOCTb PA30PEHHsI NIPEJICTABISAETC KaK
JinHelHas KOMOMHAIWS IHCTBIX SKCIOHEHT (B OOIIEM Ciydae, KOMILJIEKCHBIX 9KCIIOHEHT). Bubsmorp.
3 HasB.

Karouesvie cro6a: BEPOATHOCTh Pa30PEHNUsl, UCKHU, PACIPEIeIeHHbIE IO DPIIaHTy.

Classical Cramer—Lundberg model (see for instance [1-3]) studies the ruin probability
for stochastic process

(t)
Xt)=u+ct— ZYZ
i=1

Here N(t) is a homogeneous Poisson process of intensity A, Y;,7 > 1, are positive mutually
independent identically distributed random variables (amounts of claims) independent of
the process N (t). We’ll suppose that a = EY; < co and that p = (¢ —a))/(aX) >0 (p is
the so called safety loading).
In fact we’ll study the special case of Erlang-distributed claims. Erlang distribution
is a continuous distribution with probability density function
b'n.

flz)= mz"_le_bz, z>0

M= ()"

Here a = n/b. The moment generating function is defined for » < b. Obviously Erlang
distribution is nothing but Gamma distribution with integer shape parameter n > 1.
Let

and moment generating function

®(u) = P((Vt = 0)(X(t) = 0))

be a non-ruin probability. As tail probabilities are exponentially small for Erlang
distribution we can use the following formula for Laplace transform

M(r)—1

> p
e"® (u)dx = . r

(see [2], p.13) valid for sufficiently small positive 7.
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The right hand side of this equality is in Erlang case the rational algebraic fraction.
So to invert the Laplace transform in explicit form it is sufficient to represent this right
hand side as a sum of elementary fractions. For this we need to study some polynomial
equation (= to study the roots of a denominator):

(bfr>n:a(l—|—p)r—|—l. (1)

We’ll prove that this equation has (in addition to trivial = 0) n distinct roots Ry, ..., Ry.
For n odd only one of them is real and for n even only two of them are real. It follows
easily from (1) that real parts of these roots are positive. So our result gives the following
expressions

P (u) = i cie” fie
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O(u)=1- Z e .
i=1 "

To prove our statement concerning roots let denote

(=l

Then y satisfies the equation

where
f@) =y"" = (n+14+np)y+n-+np

(we take into account the equality ab = n). This equation has the same (up to the change
of variable) roots as (1) including additional trivial root y = 1 corresponding to r = 0.

We check now that polynomials f(y) and f/'(y) = (n +1)y™ — (n + 1 + np) have no
common roots. Indeed, f'(y) =0 for

( n )( (m) - (m))
Y= |14+——=p cos| — ) +isin | — ,
n+1 n n

(k=0,1,...,n—1). Then

n
f(yr) =y (1+n—+1p—n—1—np>+n+np.

This expression is real for k = 0 and k& = n/2 (in the case of even n)

Suppose firstly yo be a root of polynomial f(y). Then its multiplicity needs to be 2
(as f'(yo) = 0). On the other hand f'(y) > 0 for positive y and f is strictly increasing for
such y. This contradicts to previous conclusion about multiplicity.

Suppose secondly that n = 2m. Then

2m 1/(2m)
m=—(1 <-1.
Y ( +2m+1p)
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Dividing (2) on y — 1 we receive the equation
YUy T 4y =n(l+p).
Denoting z = —y we can write it as
(22 =22 4 (22— 2) = 2m(L + p). (3)

Our task is to prove that

_ ( 2777, )1/(27}1)

cannot be a root of this equation (especially to be a root of multiplicity 2). Indeed writing
the left hand side of (3) as

(z— D)™ 4 22m 3 1 4 2)

we note that this expression is strictly increasing for z > 1. So Z cannot be a root of
multiplicity 2.

We already received that equations (1) and (2) have no multiple roots. It rests to
prove the statement about the number of real roots. Taking into account the positivity of
such roots we need to analyse two cases: 1) 0 < r < b; 2) n = 2m, r > b.

In the case 1) there is exactly one root of (1) — convexity of power function. In the
case 2) also there is exactly one root — opposite directions of monotonicity for left and
right parts of (1).
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We discuss analytic structure of exact expression for ruin probability in classical Cramér—Lundberg
model with Erlang-distributed claims. This formula can be easily received via standard Laplace transform
method. Nevertheless its fine structure depends crucially on the absence (presence) of multiple roots of
some polynomial equation. We prove that all roots of this equation are simple (have multiplicity one). As a
consequence the ruin probability represents as a linear combination of pure exponents (complex exponents
in general case). Refs 3.
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