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parabolic equations in a cone with edges is considered. We prove the well-posedness by the similar
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1. Introduction. Let K = {x ∈ R3 : x/|x| = ω ∈ Ω} be open polyhedral domain
in R3 with vertex at the origin. Suppose that the boundary ∂K consists of the vertex
x = 0, the edges (half-lines) M1, · · · ,Md, and smooth (of class C∞) faces Γ1, · · · ,Γd. This
means that Ω = K ∩ S2 is a domain of polygonal type on the unit sphere S2 with sides
γk = Γk ∩ S2. Let T, 0 < T <∞, and Γj,T = Γj × (0, T ), j = 1, · · · , d;KT = K × (0, T ).

Let the partial differential operator given by

L(x, t;D) =
m∑

|p|,|q|=0

Dp
x(apq(x, t)D

q
x),

where apq are bounded functions with complex values from C∞(KT ), apq = (−1)p+qaqp
and aqp denotes the conjugate of aqp.

We also suppose that operator L is strong elliptic uniformly with respect to t ∈ [0, T ),
that is, there exists a constant c > 0 such that

∑

|p|,|q|=m

apqξ
pξq ≥ c|ξ|2m, ∀(x, t) ∈ KT (1.1)

forall vector ξ ∈ Rn.
Consider the initial-boundary value problem

ut + (−1)mL(x, t;Dx)u = f in KT , (1.2)

∂k−1u

∂νk−1

∣∣∣
Γj,T

= 0, k = 1, · · · ,m, j = 1, · · · , d, (1.3)

u|t=0 = 0 in K. (1.4)

Here function f(x, t) is given on KT , ν denotes the exterior normal to ΓjT , j = 1, · · · , d.
Elliptic boundary value problems in polyhearal domains have been studied by Maz’ya

and Rossman in the monograph [22]. Along with elliptic boundary value problems,
mathematicians have paid considerable attention to initial-boundary value problems for
parabolic equations in domains with conical points or with edges. In [7, 8] Maz’ya
and Kozlov considered the heat equation in domains with conical points in which the
asymptotics of the solutions near conical points was studied. For domains with edges,
Solonnikov [24, 25] and Nazarov [23] estimated the Green function and proved the existence
of solutions of the Dirichlet and Neumann problems for the heat equation in weighted
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Sobolev spaces. In [13, 14] Kozlov and Rossman have been studied the asymptotics of the
solutions of the Dirichlet problem for the heat equation near an edge. In [9–11] Kozlov
has been dealt with for general second order parabolic equations with time-independent
coefficients in domains with conical points, where the asymptotics of solutions and a
description of the sigularities of the Green function near the conical points were obtained.
In the case of time-dependent coefficients, let us mention some works related to this case. In
[1–4] in which the unique existence of weak solutions inW 1

p -Sobolev spaces was established.
In [6] one investigated results on the existence, uniqueness and regularity of generalized
solution of equation (1.2) with initial and general boundary conditions in conical domains.
Recently, in [19] and [20] we considered the Cauchy—Dirichlet problem for nonstationary
equations of second order in domains with edges.

In contrast to the above papers, in this work, we consider higher order parabolic
equations with time-dependent coefficients in a cone with edges. By modifying the method
suggested in [19] to obtain the well-posedness of problem (1.2)–(1.4). Furthemore, we prove
the regularity of the solution in weighted Sobolev spaces with using the help of regularity
results for elliptic boundary value problems in [22].

2. The well-posedness of the problem. Fistly, we will introduce some Sobolev
spaces as usual on K and KT .

1. Hm(K) is a Sobolev space complex functions u(x) defined on K with the norm

‖u‖Hm(K) =
( ∑

|p|≤m

∫

K

|Dpu|2dx
) 1

2

< +∞.

2. H̊m(K) denotes the closure of C∞
0 (K) in Hm(K).

3. Hm,h(KT ) denotes the Sobolev space complex functions u(x, t) defined on KT with
the norm

‖u‖Hm,h(KT ) =
( ∫

KT

( ∑

|p|≤m

|Dpu|2 +
h∑

j=1

|utj |2
)
dxdt

) 1
2

< +∞,

where p = (p1, · · · , pn);m, k are nonnegative integers.

4. The space H̊m,k(KT ) is the closure in Hm,k(KT ) of the set consiting of all functions
u ∈ C∞(KT ), which vanish near ∂KT =

⋃d
j=1 Γj,T .

Let us denote by

B(u, v; t) =

∫

K

m∑

|p|,|q|=0

(−1)|p|apq(x, t)D
q
xuD

p
xvdx

the time-dependent bilinear form. Then, we have the following Green’s formula:

(L(x, t;D)u, v)L2(K) = B(u, v; t),

which is valid for all u, v ∈ C∞
0 (K) and a.e. t ∈ [0, T ].
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Definition 2.1. A function u ∈ H̊m,1(KT ) is called a generalized solution of problem
(1.2)–(1.4), if and only if u(x, 0) = 0, ∀x ∈ K and the equality

(ut, v)L2(K) + (−1)mB(u, v; t) = (f, v)L2(K), a.e. t ∈ [0, T ], (2.1)

holds for all v ∈ H̊m(K).
From the assumptions above, we also have the Garding’s inequality, i.e., there exist

constants µ0 > 0, λ0 ≥ 0 such that

(−1)mB(u, u; t) ≥ µ0‖u‖2Hm(K) − λ0‖u‖2L2(K) (2.2)

holds for all u ∈ H̊m(K) and a.e. t ∈ [0, T ].
We note that the constant λ0 can be chosen with 0, since by a substitution v = e−λ0tu

the operator L can be transformed to L̃ = L+ λ0, with the time-dependent bilinear form
associated with L̃ is B̃(., .; t) satisfying (2.2) with the constant λ0 = 0. Hence, throughout
the present paper we also suppose that B(., .; t) satisfying the following inequality:

(−1)mB(u, u; t) ≥ µ0‖u‖2Hm(K) (2.3)

for all u ∈ H̊m(K) and a.e. t ∈ [0, T ].
By Galerkin’s approximating method and arguments similar as in [19], we have the

following theorem.
Theorem 2.1. Let f ∈ L2(KT ), and suppose that the coefficients of the operator L

satisfy
sup{|apq|, |apqt| : (x, t) ∈ KT } ≤ µ, µ = const.

Then problem (1.2)–(1.4) has unique generalized solution u in the space H̊m,1(KT ) and
the following estimate holds:

‖u‖2Hm,1(KT ) ≤ C‖f‖2L2(KT ), (2.4)

here C is a constant independent of u and f . This solution depends continuously on f .
The results above shows the unique solvability of problem (1.2)–(1.4). Furthemore,

the next observation shows that the generalized solution dependens continuously on the
right-hand side f of (1.2).

Now we will prove the continuous dependence on the coefficients of the operator L.
Let δ > 0, we denote by

Lδ = Lδ(x, t;D) :=
∑

0≤|p|,|q|≤m

Dp(aδpq(x, t)D
q),

the operator depends on δ, the coefficients aδpq are bounded functions with complex values
from C∞(KT ), aδpq = (−1)|p|+|q|aδ∗qp, a

δ∗
qp denotes the transposed conjugate matrix of aδqp.

Set

Bδ(u, v; t) =

∫

Ω

m∑

|p|,|q|=0

(−1)|p|aδpq(x, t)D
q
xuD

p
xvdx,

assume also that the Garding’s inequality

(−1)mBδ(u, u; t) ≥ µ̂0‖u‖2Hm(K), µ̂0 > 0, (2.5)
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holds for all u ∈ H̊m(K) and a.e. t ∈ [0, T ]. Let uδ be the generalized solution of problem
(1.2)–(1.4) with replacing the operator L by Lδ. Then we have the following theorem.

Theorem 2.2. Let u be the generalized solution of problem (1)–(3). Suppose that

sup{|apq(x, t)− aδpq(x, t)| : 0 ≤ |p|, |q| ≤ m, (x, t) ∈ KT } ≤ θ(δ) → 0 as δ → 0.

Then functions uδ conveges to u as δ → 0.
Proof. By setting U δ = uδ − u, we get from (2.1) that

(U δt , v) + (−1)mBδ(U δ, v; t) =
∑

0≤|p|,|q|≤m

(−1)|p|+m(apq − aδpq)D
quDpvdx (2.6)

holds for all v ∈ H̊m(K). Let {ωk(x)}∞k=1, as in Theorem 2.1, set U δ,N(x, t) =∑N
k=1 C

δ,N
k (t)ωk(x), with {Cδ,Nk }Nk=1 are the solution of the system of the following

ordinary differential equations

(U δ,Nt , ωk) + (−1)mB(U δ,N , ωk; t) =

=
∑

0≤|p|,|q|≤m

(−1)|p|+m(apq − aδpq)D
quDpωkdx, t ∈ [0, T ), k = 1, . . . , N, (2.7)

with the initial conditions
Cδ,Nk (0) = 0, k = 1, . . . , N. (2.8)

Let us multiply (2.7) by Cδ,Nk (t), sum k = 1, . . .N, to find

(U δ,Nt , U δ,N) + (−1)mB(U δ,N , U δ,N ; t) =

=
∑

0≤|p|,|q|≤m

(−1)|p|+m(apq − aδpq)D
quDpU δ,Ndx. (2.9)

Now adding this equality to its complex conjugate, we get

d

dt

(
‖U δ,N‖2L2(K)

)
+ (−1)m2B(U δ,N , U δ,N ; t) =

= 2Re
∑

0≤|p|,|q|≤m

(−1)|p|+m(apq − aδpq)D
quDpU δ,Ndx. (2.10)

Employing inequality (2.5) and the Cauchy inequality, we obtain from (2.10) the estimate

d

dt

(
‖U δ,N‖2L2(K)

)
+ (2µ̂0 − ε)‖U δ,N‖2Hm(K) ≤ Cθ(δ)‖u‖2Hm(K), (2.11)

where C only depens on ε. Choosing 0 < ε < 2µ̂0, we have

d

dt

(
‖U δ,N‖2L2(K)

)
≤ Cθ(δ)‖u‖2Hm(K). (2.12)

Integrating them with respect to t from 0 to τ, τ ∈ (0, T ), we obtain

τ∫

0

(
d

dt
‖U δ,N‖2L2(K)

)
dt ≤ Cθ(δ)‖u‖2Hm,0(KT ) ≤ Cθ(δ)‖f‖L2(KT ).
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By arguments analogous to the proof of Theorem 2.1 of [19], we arrive at

‖U δ,N‖2Hm,1(KT ) ≤ Cθ(δ)‖f‖L2(KT ).

Therefore,
‖U δ‖2Hm,1(KT ) ≤ lim inf

N→∞
‖U δ,N‖2Hm,1(KT ) ≤ Cθ(δ)‖f‖L2(KT ).

It means that ‖U δ‖2Hm,1(KT ) → 0 as δ → 0. The theorem is proved.

3. The regularity of the generalized solution. In this section, we discuss the
regularity of the generalized solution u of problem (1.2)–(1.4). Firstly, we give a needed
auxiliary lemma, which deal with the regularity the solution with respect to time variable.
It is proved by repeating almost word for word in the proof of Theorem 3.1 of [6].

Lemma 3.1. Let h ∈ N∗, and we assume that

(i) sup
{
|apqtk | : i, j = 1, . . . , n; (x, t) ∈ KT , k ≤ h+ 1

}
≤ µ,

(ii) ftk ∈ L2(KT ), k ≤ h; ftk(x, 0) = 0, 0 ≤ k ≤ h− 1.

Then the generalized solution u ∈ H̊m,1(KT ) of problem (1.2)–(1.4) has derivatives with
respect to t up to order h with utk ∈ H̊m,1(KT ), k = 0, . . . , h, and

‖uth‖2Hm,1(KT ) ≤ C

h∑

j=0

‖ftj‖2L2(KT ), (3.1)

where C is a constant independent of u and f.
Next, we will show the global regularity of the solution. To do this, we introduce

operator pencils generated by the Dirichlet problem for elliptic equation in cone K. Let
Mk be an edge of the cone K, and let Γk+ ,Γk− be the faces adjacent to Mk. Then by Dk
we denote the dihedron which is bounded by the half-planes Γ◦

k±
tangent to Γk± at Mk.

Let r, ϕ be polar coordinates in the plane perpendicular to Mk such that

Γ◦
k± = {x ∈ R3 : r > 0, ϕ = ±θk/2}.

Fix t ∈ [0, T ], we define the operator Ak(λ, t) as follows:

Ak(λ, t)U = r2m−λL0(0, t,D)(rλU),

where L0(0, t,D) =
∑

|p|=|q|=m

Dp(apq(0, t)D
q), u(x) = rλU(ϕ), λ ∈ C. The operator

Ak(λ, t) realizes a continuous mapping from W 2m
2 (Ik) ∩ W̊m

2 (Ik) into L2(Ik) for every
λ ∈ C, where Ik denotes the interval (−θk/2, θk/2). A complex number λ0 is called an
eigenvalue of the pencil Ak(λ, t) if there exists a nonzero function U ∈W 2m

2 (Ik)∩W̊m
2 (Ik)

such that Ak(λ0, t)U = 0. We denote by δ
(k)
+ (t) and δ

(k)
− (t) the greatest positive real

numbers such that the strip

m− 1− δ
(k)
− (t) < Reλ < m− 1 + δ

(k)
+ (t)

is free of eigenvalues of the pencil Ak(λ, t). Furthemore, we define

δ
(k)
± = inf

t∈[0,T ]
δ±(t)

for k = 1, . . . , d.
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We introduce spherical coordinates ρ = |x|, ω = x/|x| in K and define

U(λ, t)U = ρ2m−λL0(0, t,D)(ρλU),

where u(x) = ρλU(ω). The operator U(λ, t) realizes a continuous mapping

W 2m
2 (Ω) ∩ W̊m

2 (Ω) → L2(Ω).

An eigenvalue of U(λ, t) is a complex number λ0 such that U(λ0, t)U = 0 for some nonzero
function U ∈W 2m

2 (Ω) ∩ W̊m
2 (Ω).

Let l be a nonnegative integer, β ∈ R, δ = (δ1, · · · , δd) ∈ Rd. Furthermore, let S =
{0} ∪M1 ∪ · · · ∪Md be the set of the singular boundary points. Then V lβ,δ(K) is defined

as the closure of the set C∞
0 (K \ S) with respect to the norm

‖u‖V l
β,δ

(K) =
(∫

K

∑

|α|≤l

ρ2(β−l+|α|)
d∏

k=1

(rk
ρ

)2(δk−l+|α|)

|∂αx u|2dx
) 1

2

< +∞, (3.2)

where ρ = |x| is the distance of the point x from the origin 0, while rk denotes the distance
of the point x from the edge Mk. The closure of the set C∞

0 (K) with respect to the norm
(3.2) is denoted by V̊ lβ,δ(K).

Obviously, from (3.2) we have the following imbedding

V lβ,δ(K) ⊂ V l−1
β−1,δ−1(K) ⊂ · · · ⊂ V 0

β−l,δ−l(K).

We consider the Dirichlet problem for elliptic equations




Lu = F on K,
∂ku

∂νk

∣∣∣
Γj

= 0, j = 1, · · · , d.
(3.3)

For the following lemma on the regularity of the solutions to elliptic boundary value
problems in domains of polyhedral type, we refer to Corollary 4.1.10 and Theorem 4.1.11
of [22].

Lemma 3.2. Let u ∈ V lβ,δ(K) be a solution of the problem (3.3), where

F ∈ V l−2m
β,δ (K) ∩ V l′−2m

β′,δ′ (K), l ≥ m, l′ ≥ m.

Suppose that the closed strip between the lines Reλ = l−β− 3

2
and Reλ = l′−β′− 3

2
is free

of eigenvalues of the pencil U and that the components of δ and δ′ satisfy the inequalities

−δ(k)+ < δk − l +m < δ
(k)
− , −δ(k)+ < δ′k − l′ +m < δ

(k)
− .

Then u ∈ V l
′

β′,δ′(K) and

‖u‖2
V l′

β′,δ′
(K)

≤ C‖F‖2
V l′−2m

β′,δ′
(K)
,

where C is a constant independent of u and F .
From Lemma 3.1.3 and Lemma 3.1.6 in [22], for β, δk ∈ [−m,m], k = 1, 2, . . . d, we

have following imbeddings

Hm(K) ⊂ Vm0,0(K) ⊂ V 0
β,δ(K), V m0,0(K) ⊂ V 0

−β,−δ(K),
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and
V 0
β,δ(K) ⊂ V −m

0,0 (K),

where V −m
0,0 (K) is the dual space of V m0,0(K).

We denote by Hm,h
β,δ (KT ) the weighted Sobolev space of functions u defined in KT

with the norm

‖u‖2
Hm,h

β,δ
(KT )

=

∫

KT

( ∑

|α|≤m

ρ2(β−m+|α|)
d∏

k=1

(rk
ρ

)2(δk−m+|α|)

|∂αx u|2 +
h∑

j=1

|utj |2
)
dxdt.

Theorem 3.3. Let l, h be nonnegative integers, l > 2m, and β ∈ R, δ = (δ1, . . . , δd) ∈
Rd, β, δk ∈ [−m,m], k = 1, 2, · · · , d. Assume that the following conditions are satisfied

(i) ftk ∈ L2(KT ) ∩ V l−2m
β,δ (KT ), k = 0, 1, · · · , h+ 1,

(ii) ftk(x, 0) = 0, k = 0, 1, · · · , h− 1.

Additionally, suppose that the closed strip between the lines Reλ = m − 3/2 and Reλ =
l − β − 3/2 does not contain eigenvalues of the operator pencils U(λ, t), t ∈ [0, T ], and

−δ(k)+ < δk − l +m < δ
(k)
− , k = 1, . . . , d.

Let u ∈ H̊m,1(KT ) be the generalized solution of problem (1.2)–(1.4). Then utk ∈
V l,0β,δ(KT ), k = 0, 1, · · · , h, and

h∑

k=0

‖utk‖V l,0
β,δ

(KT ) ≤ C

h∑

k=0

‖ftk‖V l−2m
β,δ

(KT ) +

h+1∑

k=0

‖ftk‖L2(KT ), (3.4)

where C is a constant independent of u and f .
Proof. The first, we prove theorem in the case of l = 2m and for arbitrary h ∈ N.

Since V 0
β,δ(K) ⊂ V −m

0,0 (K) and L2(K) ⊂ V −m
0,0 (K), β, δk ∈ [−m,m], k = 1, . . . , d, we get from

(i) that
ftk ∈ V −m

0,0 (K) ∩ V 0
β,δ(K), k = 0, 1, · · · , h+ 1. (3.5)

Using the hypothesis (i), we have ftk ∈ L2(KT ), k = 0, 1, · · · , h+1. Thus, by Lemma 3.1,
we obtain utk ∈ H̊m(K) ⊂ V̊ m0,0(K), k = 0, · · · , h+ 1. Furthermore, V̊ m0,0(K) ⊂ V 0

β,δ(K) for
β, δk ∈ [−m,m], k = 1, · · · , d so

utk ∈ V 0
β,δ(K) = V −m

0,0 (K) ∩ V 0
β,δ(K). (3.6)

We have from (3.5) and (3.6) that f − ut ∈ V 0
β,δ(K), a.e. t ∈ [0, T ]. Applying Lemma 3.2

for following problem

Lu = (−1)m(f − ut) in K, (3.7)

∂ku

∂νk

∣∣∣
Γj

= 0, j = 1, · · · , d, (3.8)

(in the case of l = m, β = 0, δk = 0, l′ = 2m, β′ = β, δ′ = δ), we obtain u(t) ∈
V 2m
β,δ (K), a.e. t ∈ [0, T ], and

‖u(t)‖V 2m
β,δ

(K) ≤ C‖f − ut‖V 0
β,δ

(K) ≤ C‖f‖V 0
β,δ

(K) + C‖ut‖V 0
β,δ

(K).
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Integrating with respect to t from 0 to T and using Lemma 3.1, we obtain

‖u‖V 2m,0
β,δ

(KT ) ≤ C
(
‖f‖V 0

β,δ
(KT ) + ‖ut‖Hm(KT )

)
≤

≤ C
(
‖f‖V 0

β,δ
(KT ) + ‖f‖L2(KT ) + ‖ft‖L2(KT )

)
,

where C is a constant indefendent of f and u. Thus the assertions of the theorem hold for
h = 0 (in the case l = 2m). Now, assume inductive they are true for h− 1. Differentiating
both sides of (3.7) and (3.8) h times with respect to t, we have





Luth = F̂ := (−1)m
(
fth + uth+1 +

h−1∑
k=0

(
h
k

)
Lth−kutk

)
= 0 in K,

∂kuth

∂νk

∣∣∣
Γj

= 0, j = 1, · · · , d, k = 0, · · · ,m− 1,

where Lth−k =
m∑

|p|,|q|=0

Dp(apqth−kDq). Set û = uth , we get

Lû = F̂ in K, (3.9)

∂kû

∂νk

∣∣∣
Γj

= 0, j = 1, · · · , d, k = 0, · · · ,m− 1. (3.10)

From the inductive assumptions, we see that

∥∥∥∥∥

h−1∑

k=0

(
h
k

)
Lth−kutk

∥∥∥∥∥
V 0
β,δ

(KT )

≤ C

h−1∑

k=0

‖utk‖V 2m
β,δ

(KT ) ≤

≤ C
( h−1∑

k=0

‖ftk‖V 0
β,δ

(KT ) +

h∑

k=0

‖f‖L2(KT )

)
,

and uth+1 ∈ H̊m(K) ⊂ V 0
β,δ(K). This together the hypothesis (i) imply that F̂ ∈

V 0
β,δ(K), a.e. t ∈ [0, T ]. Therefore F̂ ∈ L2(K). Thus, we can use the same arguments

as above to get from (3.9), (3.10) that û = uth ∈ V 2m,0
β,δ (KT ) and

‖uth‖V 2m,0
β,δ

(KT ) ≤ C
( h∑

k=0

‖ftk‖V 0
β,δ

(KT ) +

h+1∑

k=0

‖ftk‖L2(KT )

)
.

The assertions of theorem hold for the case of l = 2m and h ∈ N.
Next, we proof the theorem by induction on l for any h. Suppose that the theorem is

true l − 1, for any h. We have




Lu = (−1)m(f − ut) =: F,

∂ku

∂νk

∣∣∣
Γj

= 0, j = 1, · · · , d, k = 0. · · · ,m− 1.
(3.11)

From hypothesis f ∈ V l−2m
β,δ (K), and by inductive assertions ut ∈ V l−1

β,δ (K) ⊂ V l−2m
β,δ (K).

According to Lemma 3.2, we obtain u ∈ V lβ,δ(K). Differentiating both sides of (3.11) with
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respect to t, we get



Lut = (−1)m

(
ft − utt − Ltu

)
=: F1,

∂kut
∂νk

∣∣∣
Γj

= 0, j = 1, · · · , d, k = 0, · · · ,m− 1.

By the same arguments as above, we have ut ∈ V lβ,δ(K). Continuing above process,
differentiating both sides of (3.11) i times with respect to t, we get




Luti = Fi
∂kuti

∂νk

∣∣∣
Γj

= 0, j = 1, · · · , d, k = 0, · · · ,m− 1.

where Fi := (−1)m
(
fti − uti+1 −

i−1∑
k=0

(
h
k

)
Lti−kutk

)
, i ≤ h. Notice that

fti ∈ V l−2m
β,δ (K), uti+1 ∈ V l−1

β,δ (K) ⊂ V l−2m
β,δ (K),

and
Lti−kutk ∈ V l−2m

β,δ (K), k ≤ i − 1.

Therefore, Fi ∈ V l−2m
β,δ (K). Applying Lemma 3.2 again, we obtain uti ∈ V l,0β,δ(KT ) and

i∑

k=0

‖utk‖V l,0
β,δ

(KT ) ≤
( i∑

k=0

‖ftk‖V l−2m
β,δ

(KT ) +

i+1∑

k=0

‖ftk‖L2(KT )

)
.

The proof is completed.
Remark: Let r = min

1≤k≤d
rk. Then there exist positive constants C1, C2 independent

of x such that

C1ρ(x)

d∏

k=1

rk(x)

ρ(x)
≤ r ≤ C2ρ(x)

d∏

k=1

rk(x)

ρ(x)
, for all x ∈ K.

Thus, the norm in V lβ(K) := V lβ,β(K) equivalent following norm

‖u‖V l
β
(K) =

( ∑

|α|≤l

∫

K

r2(β−l+|α|)|Dαu|2 dx
) 1

2

.

From Theorem 3.3, we get the following theorem.
Theorem 3.4. Let l, h be nonnegative integers, l ≥ 2m,β ∈ R, β ∈ [−m,m]. Assume

that the following conditions are satisfied

1) ftk ∈ V l−2m,0
β (KT ), k = 0, · · · , h+ 1,

2) ftk(x, 0) = 0, k ≤ h.

Additionally, suppose that the closed strip between the lines Reλ = m − 3/2 and Reλ =
l − β − 3/2 does not contain eigenvalues of the operator pencils U(λ, t), t ∈ [0, T ], and

−δ(k)k < β − l +m < δ
(k)
− .
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Let u ∈ H̊m,1(KT ) be the generalized solution of problem (1.2)–(1.4). Then utk ∈
V l,0β (KT ), k = 0, · · · , h and

h∑

k=0

‖utk‖V l,0
β

(KT ) ≤ C

h∑

k=0

‖ftk‖V l−2m
β

(KT ) +

h+1∑

k=0

‖ftk‖L2(KT ). (3.12)

In the case m = 1, we have similar results for problem (1.2)–(1.4) in a polyhedral
domain, which is proven in [21].

4. An example. To illustrate the Theorem 3.3, in this section we consider as example
the case of operator L = ∆. For the following information concerning the eigenvalues of
pencils Ak(λ, t) and U(λ, t) introduced in the previous section, we refer to [18, Chapter 2].
The eigenvalue of the operator pencil Ak(λ) are

λj = jπ/θk, j = ±1,±2, . . . ,

(see [18, section 2.1.1]). We see that δ(k)+ = δ
(k)
− = π/θk are the greatest positive real

numbers such that the strip
−π/θk < Reλ < π/θk

is free of eigenvalues of the pencils Ak(λ).
Let λ̂ be the eigenvalues of the Laplace—Beltrami operator −δ (with the Dirichlet

condition) on the subdomain Ω of the unit sphere (Ω is defined in the previous section).
Then the eigenvalues of the pencils U(λ) are given by

Λ±k = −1

2
±
√
λ̂+ 1/4.

It is well-known that the spectrum −δ is a countable set of positive eigenvalues (see
[18, section 2.2.1]). Hence, the interval [−1, 0] is free of eigenvalues of the pencils U(λ). We
denote the smallest positive eigenvalue of the U(λ) by Λ+. Then the interval [−1−Λ+

j ,Λ
+
j ]

does not contain eigenvalues of the pencils U(λ). Now, the conditions about the eigenvalues
of pencils Ak(λ) and U(λ) in Theorem 3.3 can be written down simply as follows

−1− Λ+ < m− 3/2, l − β − 3/2 < Λ+,

and
|δk + l −m| < π/θk, k = 1, . . . , d.

References

1. Alkhutov Yu.A., Gordeev A.N., Lp-estimates for solutions to second order parabolic equations,
Amer. Math. Soc. Transl. Ser. 2, 222, 1–21 (2008).

2. Byun S., Parabolic equations with BMO coefficients in Lipschitz domains, J. Diff. Eq., 209,
229–265 (2005).

3. Dong H., Kim D., On the Lp-solvability of higher order parabolic and elliptic systems with BMO
coefficients, Arch. Rational Mech. Anal., Doi:10.1007/s00205-010-0345-3.

4. Dong H., Kim D., Higher order elliptic and parabolic with variably partially BMO coefficients
in regular and irregular domains, Journal of Functional Analysis, 261(11), 3279–3327 (2011),
Doi:10.1016/j.jfa.2011.08.001.

5. Evans L. C., Partial Differential Equations, Grad. Stud. Math., 19 (Amer. Math. Soc., Providence,
RI, 1998).

403



6. Hung N.M., Anh N. T., Regularity of solutions of initial−boundary value problems for parabolic
equations in domains with conical points, J. Diff. Eq., 245, 1801–1818 (2008).

7. Kozlov V.A., Maz’ya V.G., Singularities of solutions of the first boundary value problem for the
heat equation in domains with conical points. I, Izv. Vyssh. Uchebn. Zaved. Mat., 84(2), 38–46 (1987) [in
Russian].

8. Kozlov V.A., Maz’ya V.G., Singularities of solutions of the first boundary value problem for the
heat equation in domains with conical points. II, Izv. Vyssh. Uchebn. Zaved. Mat., 84(3), 37–44 (1987)
[in Russian].

9. Kozlov V.A., Coefficients in the asymptotics of the solutions of initial-boundary value parabolic
problems in domains with a conic point, Sibirsk. Mat. Zh., 29(2), 75–89 (1988), 217 [in Russian];
translation in Siberian Math. J., 29(2), 222–233 (1988).

10. Kozlov V.A., Asymptotics of the Green function and Poisson kernels of a mixed parabolic problem
in a cone. I, Z. Anal. Anwendungen, 8(2), 131–151 (1989).

11. Kozlov V.A., Asymptotics of the Green function and Poisson kernels of a mixed parabolic problem
in a cone. II, Z. Anal. Anwendungen, 10(1), 27–42 (1991).

12. Kozlov V.A., Langer M., Rand P., Asymptotic analysis of solutions to parabolic systems, J.
Global Optim., 40(1–3), 369–374 (2008).

13. Kozlov V. A., Rossmann J., Asymptotics of solutions of the heat equation in cones and dihedra
under minimal assumptions on the boundary, Bound. Value Probl., 2012:142, 30 pp. (2012).

14. Kozlov V.A., Rossmann J., Asymptotics of solutions of the heat equation in cones and dihedra,
Math. Nachr. 285(11–12), 1422–1449 (2012).

15. Kozlov V.A., Asymptotic behavior as t → 0 of the solutions of the heat equation in a domain
with a conic point, Mat. Sb. (N.S.), 136(178), no. 3, 384–395 (1988), 431 [in Russian]; translation in Math.
USSR-Sb. 64(2), 383–395 (1989).

16. Kozlov V.A., Nazarov A. I., The Dirichlet problem for non-divergence parabolic equations with
discontinuous in time coefficients, Math. Nachr., 282(9), 1220–1241 (2009).

17. Kozlov V.A., Nazarov A. I., The Dirichlet problem for non-divergence parabolic equations with
discontinuous in time coefficients in a wedge, Math. Nachr., 287(10), 1142–1165 (2014).

18. Kozlov V.A., Maz’ya V.G., Rossman J., Spectral problems associated with corner singularities of
solutions to elliptic equations, Mathematical Surveys and Monographs, 85, (Amer. Math. Soc., Providence,
RI, 2001).

19. Luong V. T., Hung N.M., Loi D.V., Asymptotic to sulution of the Dirichlet — Cauchy problem for
second-order parabolic equations in domains with edges, Annales Polonici Mathematici, 109(2), 121–136
(2013), doi:10-4064/ap109-2-2.

20. Luong V.T., Hue N. T., On the asymptotic of the solution of the Dirichlet problem for second-
order hyperbolic equations in cylinders with edges, Electron. J. Qual. Theory Differ. Equ., (10), 1–15
(2014).

21. Luong V.T., Loi D.V., Initial-Boundary value Problems for second order parabolic systems in
cylinder with polyhedral base, Boundary Value Problems, 2011:56 (2011), doi: 10.1186/1687-2770-2011-56.

22. Maz’ya V. G., Rossmann J., Elliptic Equations in Polyhedral Domains, Mathematical Surveys
and Monographs, 162, (Amer. Math. Soc., Providence, RI, 2010).

23. Nazarov A. I., Lp-estimates for a solution to the Dirichlet problem and to the Neumann problem
for the heat equation in a wedge with edge of arbitrary codimension, Function theory and phase transitions,
J. Math. Sci. (New York) 106(3), 2989–3014 (2001).

24. Solonnikov V.A., Solvability of classical initial-boundary value problems for the heat equation in
a two-sided corner, Boundary value problems of mathematical physics and related problems in the theory
of functions, 16. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 138, 146–180 (1984)
[in Russian].

25. Solonnikov V. A., Lp-estimates for solutions of the heat equation in a dihedral angle, Rendiconti
di Matematica, Serie VII, 21, 1–15 (2001).

Статья поступила в редакцию 26 марта 2015 г.

С в е д е н и я о б а в т о р а х

Vu Trong Luong — Department of Mathematics, Taybac University, Sonla city, Sonla, Vietnam;
vutrongluong@gmail.com

Do Van Loi — Department of Mathematics, Hongduc University, Thanhhoa, Vietnam; 37loilinh@gmail.com

404


