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THE VERTICAL GRADIENTS IN THE GALACTIC ROTATION
DERIVED FROM THE PROPER MOTIONS OF THE UCAC4,
PPMXL AND PPM CATALOGUES

V. V. Vityazev, A.S. Tsvetkov

Cankr-IleTepOyprckuit rocyapCTBEHHBINA yHUBEPCUTET,
Poccniickas @enepanust, 199034, Caunxr-Ilerepbypr, YHuBepcurerckas Hab., 7/9

CraThs MOCBANEHA KMHEMATHIECKOMY AHAIN3Y COOCTBEHHBIX IBUYKEHUI 3BE3J, MACCOBBIX aCT-
pomerpuueckux Karajgoros UCAC4, PPMXL u XPM, cogep:kamux MOJIOKEHUsI, COOCTBEHHBIE JIBH-
2KeHUsI 1 (POTOMETPUIO COTEH MHJUIMOHOB 3Be3[ J0 17”'. B NnpOTHBOIOJIOXKHOCTE TPaJUIIMOHHOMY
MEeTOIy KHHEMATHIECKOIO aHAIN3a COOCTBEHHDIX ABHXKEHUN 3BE3[, OCHOBAHHOMY HA OI[CHUBAHUU IIa-
paMeTpOB KHHEMaTHYECKHX MOJEJIE MEeTOJOM HAaMMEHBIINX KBAJPATOB, HAII IIOAXOJ] OCHOBAH Ha
pa3I0XKeHNN COOCTBEHHBIX ABUYKEHUI B PAABI IO BEKTOPHBIM cdepruaeckuM dyHkiusaM. B cury mos-
HOTBI CHCTE€MbI 6a3HCHBIX (DYHKIHNI STO MO3BOJISIET IPOM3BECTU IIOJIHBII aHAIN3 KHHEMATHYECKUX
KOMIIOHEHTOB B HAO/IONAeMbIX JaHHBIX. O6uine 3Be31 B COBPEMEHHBIX KATAJIOTaX IO3BOJISIET IIPO-
BOINTH KHHEMATHUYECKHE HCCJIEJOBAHUSI B OTAEJIBHBIX IHOACHCTEMAX ['alaKTWKH, B YaCTHOCTHU, B €€
CEBEPHOM U I02KHOM moJtyapusix. C 9Toii nespio 6bl1a MOCTPOEHa CHCTEMa BEKTOPHBIX C(hepUYecKux
dyHKIMA, OPTOHOPMHUPOBAHHBIX Ha IIPOU3BOJILHON 30HE cdepbl. Takoil mpueMm mo3BoaniI u36eKaTh
3HAYUTEJBHBIX KOPPEJIAIUil MeXKy HEN3BECTHBIMU IIapaMeTPaMy IIPU BBIIIOJIHEHHH Pa3fe/IbHBIX pe-
IIEeHUH 10 MOIymapusaM. B HacTosimeil cTaTbe M3/I0KEH METOJ, KHHEMATHYIECKOTO aHAIN3a COOCTBEH-
HBIX [IBU’KEHUI 3B€3/] B CEBEPHOM U IOXKHOM IIOJIYIIApUsAX [aJlaKTHKH, & TaK»Ke OIUCAHbI PE3YJIbTaTh
«CEBEPHOTO» U <IOXKHOTO» PEIICHUH, ITOKA3bIBAIOIINE, ITO KUHEMATHYIECKHUI aHAIN3 COOCTBEHHBIX
neuxkennit 3se31 karajorop UCAC4, PPMXL u XPM noszBoiuni o6Hapy>KUTh 3aMeJlJIEHHEe CKOPO-
cru BpalleHnst ['ajlaKTUKN M YyCKOPEHHE CKOPOCTH PACIIMPEHHs] 3BE3JHOI CHUCTEMBI C yBeJMYEeHUEM
PaCCTOSIHUSI OT OCHOBHOH ItockocTu lamakruku. [[yist MORy/si BEPTUKAIBLHOIO IPASHEHTa CKOPOCTH
Bpalenus [ajakTuku 6bL1H moJrydens! cienyromue 3uadenusi: UCAC4: 40.14+0.2; PPMXL: 36.240.4;
XPM: 37.740.1 km-s~! - kpc™!, B To Bpemsi Kak /jIst BEPTHKAJIBHOTO TPAIHEHTa CKOPOCTH PACIIH-
PeHUsI COOTBETCTBYIOIINE OlEHKH oKazauch ciaenyommumu: UCAC4: 11.9 £0.2; PPMXL: 19.0 £ 1.1;
XPM: 10.9+ 0.3 km - s~ - kpc™!. Bubmmorp. 16 nass. Wn. 1. Ta6. 4.

Karouesvie caosa: acTpoOMeTpusi, 3Be3/{Hasi KHHEMATHKa, CTPYKTypa ['amakTuku, cobcTBeHHBIE
JBUXKEHUS 3Be3, cepudeckue OyHKIUN.

1. Introduction. Modern astrometric catalogues UCAC4 [1], PPMXL [2] and
XPM [3] with full coverage of the sky contain millions of entries and provide a quali-
tatively new material, in particular, for investigating the kinematics of nearby stars in
both Galalactic hemispheres separately. Unfortunately, due to high correlations of the
parameters the standard LS solutions of the Ogorodnikov—Milne equations on hemispheres
are hardly to be trusted. To remedy this we use an approach the first step of which
is the expansion of proper motions on a system of vector spherical harmonics which
are orthonormal on a hemisphere. At the second step the kinematical parameters are
derived from the coefficients of the expansion. For the first time, this approach was used
by Vityazev and Tsvetkov [4] for the kinematic analysis of the proper motions listed
in astrometric catalogues Hipparcos [5], Tycho-2 [6] and UCAC3 [7]. In this paper this
technique is applied to the huge present day catalogues UCAC4, PPMXL and XPM
containing up to 108 stars.

2. Ogorodnikov—Milne equations. The kinematics of nearby stars (up to 1000 pc)
may be derived from the linear 3-D Ogorodnikov—Milne model [8]. In this model we have
the following parameters: ™ — the parallax of a star; U, V, W are the components of the
solar motion vector relative to the stellar centroid; 1, 9, Q3 are the components of
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the rigid-body rotation vector of the stellar centroid; M, My, M35 are the parameters
describing the contraction or expansion of the velocity field along the principal axes of
the coordinate system; ML, = My}, Mt = M}, My, = M, — parameters describing the
velocity field deformation in the principal plane and the two planes perpendicular to it.
Introducing the factor K = 4.74 for converting the dimensions of stellar proper motions
mas -y~ ! to km - s~ - kpe™!, for the proper motions in longitude and latitude Apycosb
and Apy we have

Kupycosb= Um sinl — Vr cosl — Qqsinbcosl — Qo sinbsinl + Q3 cosb —

1
— fgsinbsinH—M;fn)sinbcosl—#Mf;cosbcole—§Mf1cosbsian7 (1)

Kupy = Um coslsinb+ Vr sinlsinb — W cosb+ Qysinl — Qs cosl —
1
— §M1J5 sin 2bsin 21 + M5 cos 2bcosl + M5 cos 2bsinl —

1 1
- §M1*1 sin 2b cos® | + §M§f3 sin 2b. (2)

In these equations the values M7, = M| — M5, M3, = M, — M., are introduced since the
catalogues we are dealing with provide us neither with radial velocities nor with parallaxes
of the stars. That is why, the value M2'E can not be determined when only the PM are
available [9]. In addition, if parallaxes are unknown, only the mean values of the products

U= ({Un), V= (Vr), W= (Wnr) can be derived instead of the velocity components
UV, W.

2. Vector spherical harmonics (VSH). In this paper we solve the Ogorodnikov—
Milne equations using the spherical harmonics formalism. At the first step define the scalar
spherical harmonics as [10]:

Pn,O(b)7 k:()apzlv
Knip(l,b) = Ruk { Pur(b)sinkl, k #£0,p = 0; (3)
P,i(b)coskl,k#0,p=1,
2(n—k)! .
Ry — 2n+1 (n+k)!’k>0’ ()
4m 1, k=0,

where [ and b are the longitude and latitude of the point on the sphere, respectively,
(0 <1l <2m —7/2 < b < 7/2); Pu(b) are the Legendre (at k& = 0) and associated
Legendre (for k£ > 0) polynomials that can be calculated using the recurrence relations

Pop(b) =sinb2Z2=2 P,y (b) — BHEELP, 5 4(b), k=0,1,...n=k+2,...

Pt = 8 o, .
Piy11(b) = % cos® bsin b.

For convenience, a linear numeration of the harmonics K, by one index j is often
introduced. In this way the index j is used instead of (nkp), where

j=n?+2k+p—1. (6)
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To proceed further, consider a set of mutually orthogonal unit vectors e;, ey, e, in
the directions of the longitude and latitude and along the line of sight, respectively, in
a plane tangential to the sphere. Following the definitions of vector spherical harmonics
in [11] and [12] we introduce radial, V, toroidal, T; and spheroidal S; harmonics via the
relations

V;(1,b) = K;(I,b)e,, (7)

0K ;(l,b 1 0K;(l,b
= (e ). ®

o 1 0K;(1,b) 0K;(1,b)
S = (cosb a + b v)> 9)

where )
Ty = ————. (10)
n(n+1)

Denote the components of the unit vector e; as T} , SJL, and the components of the unit
vector e, — respectively T’ Jb and Sé?:

T; =Tlei + T)es, (11)
Sj = S;-el + S;?eb. (12)
With P, ;4+1(b) =0 if n < k + 1, these components are defined as:

Pn,l(b)u k:()vp:]-a
T} = i { (—ktanbP(b) + Pajess () sinkl, b#£0,p=0,  (13)
(—ktanbPi(b) + Py g+1(b)) coskl, k#0, p=1;

0, k 7é 0,p=1,
b_ _ Rnk k _
T = 75\ ~wsplnk(b)coskl, k#0,p=0, (14)
+E P (b)sinkl, k#0,p=1;

cosb

Pn,l(b)u k:()vp:]-a
S = Bar L (_ktanbPoy(b) + Pogy1(b))sinkl, k#£0, p=0, (15)

J n(n+1)
(—ktanbPpi(b) + Py g+1(b))coskl, k#0, p=1;
0, k=0,p=1,
! _ _ Ry _
S;= n(n’ll) C%b k(D) coskl, k#0,p=0, (16)
— ko P(b)sinkl, k+#0,p=1.
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The introduced harmonics V, T;, S; are orthonormal on the sphere since the following
relations are valid:

Q/(Vi-vndwzﬂ/m-Tj>dw=§z/<si-sj>dw={?jjji (17)
/(Vi-Tj)dWZ/(VZ-~sj)dw:/(si.Tj)dw:o,vm. (18)
Q Q Q

4. The zone vector spherical harmonics (ZVSH). Let the data of some zonal
catalogue belong to the following domain of the celestial sphere:

<l<2
z=0st=2m (19)
bminébébmax'

Introduce the transformation

b = arcsin(a sinb + ), (20)
that for 5 N
o= . B= _M’ (21)
So — 81 S2 — 81
$1 = SN bmin, S2 = SIN bmax (22)

transforms the entire sphere into region Z.
Now, the zone vector spherical harmonics (ZVSH) are introduced as

Vj(lv 8) = \/&K]‘(l, B)erv (23)
T;(1,b) = T(1, b)e, + TP (1, b)es, (24)
S;(1,b) = SL(1,b)e; + Sb(1, b)es, (25)
where
T!(1,b) = VaTi(l,b): Tb(,b) = VaTl(l,b), (26)
SH(1,b) = Vasi(l,b); Sh(L.b) = vasi(l,b). (27)

These harmonics are orthonormal on the set Z, so the following relations are valid:

/(Vi.vj)dw=/(Ti.fj?j)dw=/(Si.sj)dw:{(l):i;’; (28)

Z Z Z
Vi Tj)do= [ (Vi-S;)dw= [ (Si-T;)dw=0, Vi,j. (29)
[ (vom)ao= [ (vs)aom [ (5m)as=n vi

Here, for example,

2 bmax 27 bmax
/(TTJ) dw :a/dl /T;(zyé) TH(1,b) cosbdb+a/dl /Tbi(lj)) T!(1,b) cosbdb.
zZ 0 bmin 0 bmin

(30)
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Since the radial velocities are not available in the catalogues UCAC4, PPMXL and
XPM, in what follows we consider only the tangential stellar velocity field specified in
region Z on the celestial sphere:

U(1,0) = pj e + py, e, (31)

where p; = Ky cosb; uj = Kpp.
We can now use the system of Zone Vector Spherical Harmonics to decompose the

velocity field as
Zt (1, b) +Zsj (32)

Given the orthonormality of the basm, the decomp051t10n coeflicients can be calculated by
the following formulae:

tjz/(U-Tj) dw; s]:/(U-Sj) dw. (33)

Z 4

Note that the expressions (32) and (33) are valid for all sky analysis since in this case
a=1, =0and T;(/,b) and S;(l,b) become T,(l,b) and S;(l,b) respectively.

5. The method in practice. Assume that we have at our disposal a catalogue of
stars with galactic coordinates and proper motion components in latitude and longitude.
As was mentioned before, the full and the zonal catalogue may be treated likewise, so let
us describe the sequence of steps for the kinematic analysis of the stellar velocity field
using ZVSH.

(1) Calculating the ZVSH decomposition coefficients t;, s; of the velocity field. These
coefficients and their root-mean-square errors (rmse) can be derived from the equations

=2 L0+ s 85(b), (34)

pp = tTP,0) +>s;80(1,b) (35)
J J

by the standard least-squares procedure. The total number of decomposition terms
can be chosen from the condition that the residuals in the velocity field components
with statistically significant harmonics subtracted from them behave as random
quantities [10, 12].

When the method is applied to massive catalogues the pre-pixelization of data on
the sphere is needed. As applied to our problem, the pixelization scheme should satisfy
the requirement that the pixel centers are equidistant in both latitude and longitude. Two
schemes satisfy this requirement. One of them is HEALPix [14], the other is the so-called
Equidistant Cylindrical Projection (ECP). Regarding the VSH formalizm the pixelization
algorithms were discussed in detail previously [13]. In this paper we dwelt on ECP, in which
the stellar proper motions are averaged over spherical trapeziums obtained by a uniform
division of the equator and the latitude circle into M = 24 and N = 18 parts, respectively.
Since the cells we use have different areas the average PM values were weighted by cos(b.)
with b, standing for the latitude of the cell’s centre.

It is necessary to say that equations (1), (2) correspond to the physical model of the
stellar velocity field since we know the physical meaning of each parameter of it. But this
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model is not full since it does not embrace all physical content of the observed data. In
contrast to that, equations (34) and (35) are full since all the information is captured
by the decomposition coefficients (due to completeness of the VSH and ZVSH). But this
model is not physical since we do not know what physics stands behind each decomposition
coefficient.

(2) Determining the parameters of a specific kinematic model. Once the decomposition
coefficients t; & oy,,5; £ 05, have been determined, we can write the equations relating
the decomposition coefficients to the sought for model parameters. In case of the
Ogorodnikov—Milne model and when the full catalogue is used, the decompositions (34)—
(35) are finite and only VSF up n < 2 are needed to find the parameters of the physical
model [13].

In this paper we analyse the kinematics of the northern and southern galactic
hemispheres. In this case the decompositions (34)—(35) are infinite. The connections
between the decomposition coefficients and kinematic parameters up to n = 3 are
shown in Table 1 Upper signs correspond to the northern hemisphere, the lower — to the
southern hemisphere. In case of one sign the signs of both hemispheres coincide. Units:
km-s~!-kpe™!. To determine the kinematic parameters, the number of equations must be
equal to the number of parameters. Thus several (theoretically infinitely many) estimates of
model parameters can be obtained. In practice, it is appropriate to construct the solutions
for the lowest-order decomposition terms. In our method we will use two estimates of the
parameters, which we refer to as the main and alternative solutions:

U 5101 U 5101
1% 5110 1% 5110
W S111 W S111
0 $201 O 8301
Qo 5210 Qo t201
Q3 | =P lsann|, |2 | =Q|tio]- (36)
My $220 M t111
M2+3 $221 M;}) to10
M, t101 M, to11
M7, 110 M7, t220
[ M3 | Lt111 ] | M3; | [ {221 |

The matrices P (main solution) and @ (alternative solution) are shown in Tables 2
and 3 The upper and lower signs correspond to the northern and southern hemispheres,
respectively; if there is one sign, then the signs of the coefficient are identical for the
northern and southern hemispheres. Comparison of the two solutions may be used to test
the compatibility of the data to the model.

6. Numerical results. We applied our method to proper motions of stars listed in
the catalogues UCAC4, PPMXL and XPM. No parallaxes are available in these catalogues.
The full description of the results obtained for full sphere and separate hemispheres
solutions may be found in [15]. The present paper is devoted only to one remarkable feature
in the “northern” and “southern” solutions, since all the three catalogues gave evidence
that the parameters 1, M2+ 3, S, M1+ 5 have different signs in different hemispheres. A
possible explanation of this fact comes from considering the corresponding values in the
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Table 1. The kinematics of the ZVSH (n < 3) in the frame of Ogoridnikov—Milne model

i |n|k]|p T; Sj

1 {1]0]1 +1.949 Q3 —1.949W £ 0.873(M3y — 2 M)

2 | 1] 1|0 F0.7680 +1.791 Q3 — 0.256 M5 | —1.791V F 0.768 Q1 + 1.279M;

3 | 1| 1|1 £0.768V +1.791 Q1 +0.256M5 | —1.7910 F 0.768 Q2 =+ 1.279Mf;

4 |2]0]|1 F0.453 Q3 +0.453W + 0.274(M35 — S M)

52|10 403320 F0.332Q2 £ 0.332M5 | £0.332V +0.332Q1 + 0.728M;

6 | 2| 1] 1| —0.332VF0.3320Q1 F0.332M5; | £0.3320 — 0.332Q2 + 0.728 M,

712]2]0 +0.216M7, +1.338 M7,

8 2|21 F0.433M 7, +0.669M7,

9 |3]0]|1 +0.270 Q3 —0.270W F 0.017(M35 — 1 M7,)

10 [ 3| 1|0 F0.1990 +0.199 Q2 — 0.199M75 | —0.199V F 0.199 Q1 F 0.199M 3

11 [ 3 | 1|1 | £0.199V +0.199 Q1 + 0.199M5 | —0.199T £ 0.199 Q3 F 0.199M;

1213|210 —0.109M7, F0.463M7,

131321 +0.219M, F0.231M7,

1413|310 0 0

15 3|31 0 0

Table 2. Matrix P for calculating the main solution (36)

0 0 —0.54 0 0 +1.10 | 0 0 0 | +0.44 0

0 —0.54 0 0 +1.10 0 0 0 0 0 F0.44
—0.29 0 0 +0.94 0 0 0 0 0 0 0

0 +0.21 0 0 —0.64 0 0 0 0 0 0.77

0 0 F0.21 0 0 0.64 0 0 0 0.77 0

0 0 0 0 0 0 0 0 | 051 0 0

0 0 +0.15 0 0 1.16 0 0 0 0.15 0

0 £0.15 0 0 1.16 0 0 0 0 0 —0.15

0 0 0 0 0 0 075 | 0 0 0 0

0 0 0 0 0 0 0 | 149 | 0 0 0
£0.49 0 0 2.10 0 0 0 |075] 0 0 0

Table 3. Matrix Q for calculating the alternative solution (36)
0 0 —0.42 0 0 +0.56 0 2.04 0 0 0
0 —0.42 0 0 0 0 F0.56 0 —2.04 0 0
—0.06 0 0 —3.25 0 0 0 0 0 0 0
0 +0.14 0 0 0 0 0.84 0 +1.18 0 0
0 0 F0.14 0 0 0.84 0 +1.18 0 0 0
0 0 0 0 F2.21 0 0 0 0 0 0
0 0 +0.28 0 0 0.28 0 +2.15 0 0 0
0 +0.28 0 0 0 0 —0.28 0 F2.15 0 0
0 0 0 0 0 0 0 0 0 0 F2.31
0 0 0 0 0 0 0 0 0 +4.63 0
+1.00 0 0 F7.25 0 0 0 0 0 +2.32 0
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Table 4. Values 1 — M32 and Qo + M. 1 obtained from northern and southern
galactic hemispheres of the UCAC4, PPMXL and XPM (Units: km -s~! - kpc™1)

| 1 12m 137 | 1m0 1™
Catalogue UCAC4
10(Q1 — M) N 424+ 8 396 + 7 369 + 5 357+4 | 352+3 | 360+3
10(Q — M3y)s | —4154+9 | —4214+11 | —446+8 | —432+7 | —423+4 | —419+3
Os 420+ 6 408 +7 408 + 5 3904+4 | 387+3 | 390+2
10(92+M+1)N —156+8 | —197+7 | —163+5 | —109+4 | —78+3 | —66+3
10(Q2 + M3))s 113+9 | 136+11 118 £8 126 £ 7 95+ 4 7343
&n 135+ 6 167+ 7 140 £ 5 117 +4 86 + 3 68 & 2

Catalogue PPMXL
10(921 — M;;)N 513 + 18 402 + 16 451 + 17 478 + 10 473 £ 7 439+ 6
10(921 — M+2)S —456 £ 28 | —470+17 | —405+17 | —3544+12 | —332+£8 | =294+ 7
aVS 484 + 17 436 + 12 428 +£ 12 416 £8 403 £5 367+ 5
10 (Qg—i—MJrl)N —208 +18 | —1734+17 | —211+17 | —1814+10 | —165+7 | —119+6
10(Q2 + M:"l)s 162 + 28 216 + 17 234 + 17 253 + 12 189 £ 8 179+ 7

10 ’% 185 + 16 194 £+ 12 222+ 12 217+0,8 177 £5 149+ 4
Catalogue XPM

10(21 — M:;;)N 344 £+ 14 333 £ 08 346 £ 5 377+ 4 381+3 364 + 2
10(21 — +2)S —630 £ 14 —623+9 —566 + 6 —491+4 | —421+4 | —398+3
10‘8‘/5 487 £ 10 478 £ 6 456 + 4 434 £3 401 £2 381+ 2
10(Q22 —i—M;rl)N —68 + 14 —97+38 —86+£5 —60+3 | —474+03 —39+2
10 (Q2+M+1)S 199 + 14 196 £+ 10 170+ 7 143+ 4 115 +4 86 + 3
BVR 133 £ 10 146 £ 6 128 £ 4 102 £3 81402 63 + 2

galactocentric cylindrical coordinate system [16] where the following relation is valid:
Q- My = -5 (37)

Here Vg is the circular velocity of the local reference frame around the galactic center.
This quantity is identified with the Galaxy’s rotational velocity in the solar neighborhood.
From Table 4 which gives the numerical values for the values ; — MJ, that we obtained
from different samples of our catalogues, we see that the vertical gradient of the Galaxy’s
rotational velocity OVs/0z has different signs in the northern and southern galactic
hemispheres, with the velocity itself decreasing with increasing distance from the principal
galactic plane.

Again, from the Table 4 for the vertical gradient of the expansion velocity of the

stellar system 5
V

Q + Mj = _a—zR (38)
we may conclude that the expansion velocity increases with increasing distance from the
principal galactic plane. The average values of both the gradients |0Vs/dz| and |0Vr /%]
derived from all the catalogues under consideration are in good agreement. Nevertheless,
each catalogue shows distinct dependence of the gradients on magnitude with absolute
values diminishing toward the faint stars (Fig. 1). The PPMXL and UCAC4 realize
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the reference frames which does not rotate with respect to quasars, whereas the XPM
frame is claimed to be free of rotation with respect to galaxies since its absolute proper
motion frame (the absolute calibration) was specified with more than 1 million galaxies
from 2MASS and USNO-A2.0. Theoretically, both quasars and galaxies form the quasi-
inertial reference systems but due to different techniques of measurement the resulting
reference frames may differ systematically. In this connection, it is worth to note that the
values |0Vg/9z| derived from UCAC4 and XPM are practically the same. The magnitude
equation visible in Fig. 1 deserves further study.

Fig. 1. Dependence of the ‘%’ (left box) and ‘BBLZI?’ (right box) on magnitude. Solid line — UCAC4;
dots — PPMXL; dashes — XPM. Units: km - s~! - kpc™?.

For the first time, the values of the both gradients were derived by Vityazev and
Tsvetkov [4] from the proper motions of the UCAC3, Tycho-2 and Hipparcos catalogues.
Here the comparison with the all sky solution was made. It was shown that these gradients
give rise to an apparent acceleration of the solar motion along the x and y axes of
the rectangular Galactic coordinate system. The present paper dealing with the most
rich catalogues available at present days confirms these results and shows that both the
gradients though m-dependent are detected with high level of reliability.

7. Conclusions. The success of this paper is based on the vector spherical harmonics
solutions of the Ogorodnikov-Milne equations on hemispheres which permitted to obtain
the uncorrelated values of the kinematical parameters and to show that some of them
have different signs in both hemispheres. The transition to the Galactocentrical cylinder
coordinate system immediately made it clear that the change of signs is connected with the
retardation of the Galaxy’s rotational velocity and acceleration of the expansion velocity
of the stellar system with increasing the distance from the principal Galactic plane.

8. Aknowledgements. This work was done with support of the St.Petersburg
University Grant 6.0.161.2010.
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THE VERTICAL GRADIENTS IN THE GALACTIC ROTATION DERIVED FROM
THE PROPER MOTIONS OF THE UCAC4, PPMXL AND PPM CATALOGUES
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The paper deals with the kinematic analysis of the proper motions listed in huge modern astrometric
catalogues UCAC4, PPMXL and XPM. Our approach is based on representation of the proper motions on
the set of vector spherical harmonics. To study the stellar kinematics in the northern and southern galactic
hemispheres separately the set of the orthonormal vector spherical harmonics defined on the latitude zone
of the sphere was constructed. In the performing the separate solutions this approach concealed the
correlations between the unknown parameters and made the solution trustworthy.

It is shown that the kinematic analysis of the UCAC4, PPMXL and XPM proper motions in northern
and southern Galactic hemispheres detects retardation of the Galaxy’s rotational velocity and acceleration
of the expansion velocity of the stellar system with increasing the distance from the principal Galactic
plane. The estimates of the vertical gradient of the Galactic rotation are UCAC4: 40.1 + 0.2; PPMXL:
36.2 4+ 0.4; XPM: 37.7 £ 0.1 km - s~ ! - kpc™!, while the values of the vertical gradient of the expansion
velocity turned out to be UCAC4: 11.9 + 0.2; PPMXL: 19.0 & 1.1; XPM: 10.9 £ 0.3 km - s~ - kpc™!.
Refs 16. Figs 1. Tables 4.
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