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EXISTENCE OF SOLUTIONS FOR SEMILINEAR ELLIPTIC
BOUNDARY VALUE PROBLEMS ON ARBITRARY OPEN SETS
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We show the existence of a weak solution of a semilinear elliptic Dirichlet problem on an
arbitrary open set Ω. We make no assumptions about the open set Ω and very mild regularity
assumptions on the semilinearity f , plus a coerciveness assumption which depends on the optimal
Poincaré—Steklov constant λ1. The proof is based on Schaefer’s fixed point theorem applied to a
sequence of truncated problems. We state a simple uniqueness result. We also generalize the results
to Robin boundary conditions. Refs 17.
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1. Introduction. The question of existence of (weak) solutions for a boundary value
problem like

{
−∆u(x) = f(x, u(x),∇u(x)) (x ∈ Ω),
Bu(x) = 0 (x ∈ ∂Ω)

(1)

is a classical problem. Here Bu(x) = 0 (x ∈ ∂Ω) is simply an abbreviation for specific
boundary conditions (eg. Dirichlet, Neumann or Robin boundary conditions). However, in
older publications (e.g. [1–3] and references therein) it seems to be standard to assume that
Ω is bounded and has sufficiently smooth boundary. On the other hand for a long time it
is well known that Dirichlet (and Neumann) boundary conditions can easily be defined on
arbitrary open sets in a weak sense. But until now a general existence theorem for weak
solutions of (1) on arbitrary open sets (that means in particular possibly unbounded,
not smooth, not connected), possibly irregular semilinearities f (that means in particular
possibly not Lipschitz continuous in u or ∇u) and general boundary conditions seems to
be unknown.

In this paper we state and prove such a theorem with the help of a fixed point theorem
in a locally convex space. For simplicity we restrict ourselves to the case of Dirichlet
boundary condition. A short discussion on how the results extend to other boundary
conditions is included at the end of the paper. To find solutions of (1) with the help of
fixed point methods is standard. However, in the majority of textbooks a Banach space
setting is presented (cf. [4–6]).

2. Assumptions and main results. Let Ω ⊆ Rd be an arbitrary open set. We
consider the following Dirichlet problem:

{
−∆u(x) = f(x, u(x),∇u(x)) (x ∈ Ω),

u(x) = 0 (x ∈ ∂Ω).
(2)

We call u a weak solution of this problem if u ∈ H1
0 (Ω) such that f(x, u,∇u) ∈ L2(Ω) and

∫

Ω

∇u · ∇ϕdx =

∫

Ω

f(x, u,∇u)ϕdx ∀ϕ ∈ C∞
c (Ω).
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In the following we show under which assumptions on the semilinearity f we can prove a
priori bounds, existence and uniqueness of weak solutions.

2.1. Assumptions and notation. We assume that f : Ω × R × Rd → R is a
Caratheodory function. This means that f = f(x, s, ξ) is measurable as a function in x
when s and ξ are fixed, and is jointly continuous as a function in s and ξ when x is fixed,
for almost all x. The function f should satisfy a coerciveness and a growth condition

f(x, s, ξ)s ≤ (λ1 − ε)s2 + L |ξs|+ h(x) |s| ∀x ∈ Ω, s ∈ R, ξ ∈ Rd, (3)

f(x, s, ξ)s ≥ −γ(|s|) |s| − L0 |ξs| − h0(x) |s| ∀x ∈ Ω, s ∈ R, ξ ∈ Rd. (4)

Here λ1 is the optimal Poincaré—Steklov constant for the Dirichlet—Laplace operator,
i. e. λ1 ≥ 0 is the largest real number such that λ1 ‖u‖2L2(Ω) ≤ ‖∇u‖2L2(Ω) is true for all

u ∈ H1
0 (Ω). The positive constant L has to satisfy

L < Lmax(ε, λ1) :=

{
ε/
√
λ1 if ε ≤ 2λ1,

2
√
ε− λ1 if ε ≥ 2λ1.

(5)

Furthermore ε > 0 and h ≥ 0 with h ∈ L2 ∩Lq(Ω) for some q ≥ 2 which (for simplicity) is
not equal to d/2. The number q will serve as a parameter. L0 ≥ L is an arbitrary constant
and h0 ∈ L2(Ω) with h0 ≥ 0. The monotone increasing function γ : [0,∞) → [0,∞) is
assumed to satisfy

lim sup
s→0

γ(s)

s
<∞ (6)

and in case of q < d/2 also

lim sup
s→+∞

γ(s)

sq∗∗/2
<∞ (7)

for the positive real number q∗∗ = qd/(d − 2q). For future use we also define q∗∗ = ∞ if
q > d/2. The bigger the parameter q, the more restrictive is the coerciveness condition
(3) but the less restrictive is the growth condition (4). Note that the condition (6) is not
needed if the measure of Ω is finite. In the case when (6) is not satisfied but the measure
of Ω is finite we could change γ(s) to (γ(s)− γ(1))+ and add the additional constant γ(1)
to the function h0 without touching its L2-integrability. Here and in the following for a
real number a we define a+ := max{a, 0}.

We will also consider the following two Dirichlet problems on Ω:
{

−∆v = (λ1 − ε)v − L |∇v| − h(x) (x ∈ Ω),
v(x) = 0 (x ∈ ∂Ω)

(8)

and
{

−∆v = (λ1 − ε)v + L |∇v|+ h(x) (x ∈ Ω),
v(x) = 0 (x ∈ ∂Ω).

(9)

In Section 4.4 we prove that solutions of these two equations exist and are unique. Therefore
by v, v let us denote the solutions of (8) and (9), respectively. We will also see that
v ≤ 0 ≤ v. By (3) this implies −∆v ≤ f(x, v,∇v) and −∆v ≥ f(x, v,∇v) that is, these
two functions are sub- and supersolutions of (2).
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2.2. Main results. The first step to prove existence of a weak solution of (2) is to
prove a priori estimates for hypothetical solutions of a class of semilinear problems: Let
µ ≥ max{0, ε− λ1}, 0 < t ≤ 1 and ω be an open subset of Ω. Moreover, let v0 ≤ 0 ≤ v1
be two measurable functions on Ω. Consider





−∆u+ µu = t (f(x, σ(x, u),∇u) + µσ(x, u))︸ ︷︷ ︸
=:bσ(x,u,∇u)

χω(x) (x ∈ Ω),

u(x) = 0 (x ∈ ∂Ω),

(10)

where σ(x, s) = max{v0(x),min{s, v1(x)}}.

Theorem 1 (a priori bounds in H1
0 ). Assume that f satisfies (only) the coerciveness

condition (3). Let u be a weak solution of (10). Then u satisfies an a priori estimate in
H1

0 (Ω). More precisely, there exists a constant C > 0 such that

‖u‖H1
0 (Ω) ≤ C ‖h‖L2(Ω) .

The constant depends only on λ1, ε and (Lmax(ε, λ1)− L)−1.

This theorem is the central argument in the proof of the existence of a weak solution
of (2) in Section 5.

Theorem 2 (a priori bounds in Lq∗∗). Assume that f satisfies (only) the condition (3),
where the term λ1−ε is replaced by any positive number δ. Let u be a weak solution of (10).
Then u satisfies an a priori estimate in Lq∗∗(Ω). More precisely, there exists a constant
C > 0 such that

‖u‖Lq∗∗ (Ω) ≤ C
(
‖u‖L2(Ω) + ‖h‖Lq(Ω)

)
.

The constant depends only on d, q, δ and L.

Much more interesting than merely a bound for the Lq∗∗-norm is the fact that weak
solutions are even a priori dominated by functions in the Lq∗∗(Ω).

Theorem 3 (a priori domination in Lq∗∗). The Dirichlet problems (8) and (9) have unique
weak solutions v ≤ 0 and v ≥ 0 respectively. Moreover, if we assume that f satisfies (only)
the coerciveness condition (3) then

v ≤ u ≤ v

for every weak solution u of (10).

The main result of this paper is

Theorem 4 (existence). Under the assumptions in Section 2.1 the Dirichlet problem (2)
admits a weak solution.

Note that only in this theorem, but not in the preceding three theorems we assume
the validity of the growth condition (4). The assumption (5) on L in (3) might look a
bit strange. But for our proof of the a priori bounds in H1

0 it is needed. For a discussion
of this assumption see Section 6. It is not the main concern of this paper but whenever
one can show an existence theorem the question of uniqueness arises. In Section 4.2 a
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simple condition is given when uniqueness holds. Section 7 is devoted to Robin boundary
conditions.

3. Schaefer’s fixed point theorem. The proof of Theorem 4 is mainly based on
Schaefer’s fixed point theorem (cf. [17]). We do not apply the original formulation of
Schaefer’s theorem from his paper, but a slightly different version. Actually it does not
matter which version we apply but we prefer the version presented below.

Theorem 5 (Schaefer’s fixed point theorem). Let X be a locally convex Hausdorff space
and T : X → X a continuous mapping. Let

S = {u ∈ X |∃0 < t ≤ 1 : u = tTu}.

Let ‖·‖ be a continuous semi-norm on X, let ρ > 0 be a number and Kρ = {u ∈ X : ‖u‖ <
ρ}. If

(i) S ⊆ Kρ and

(ii) TKρ ⊆ X is relatively compact,

then T has a fixed point u = Tu.

A proof which is based on the Tychonoff—Schauder fixed point theorem (cf. [18]) can
be found in [2, Section 2]. Actually we could replace (i) by the more general condition
u ∈ S ⇒ ‖u‖ 6= ρ. This shows the connection of Schaefer’s theorem to the well known
degree theory of Leray—Schauder.

4. A priori bounds and domination. We consider the class of boundary value
problems (10) and prove the Theorems 1, 2 and 3. It is easy to generalize these Theorems
also to sub- and supersolutions.

4.1. A priori bounds in H1
0 (Ω). Proof of Theorem 1. Let u be a weak solution

of (10). We choose u ∈ H1
0 (Ω) as a test function for (10). Since λ1+µ−ε ≥ 0, |s| ≥ |σ(x, s)|

and the fact that σ(x, s) and s have the same sign for every s ∈ R and almost all x ∈ Ω
by the coerciveness condition (3) we may deduce

‖∇u‖2L2(Ω) + µ ‖u‖2L2(Ω) ≤ t(λ1 + µ− ε) ‖u‖2L2(ω)
+

+ tL ‖∇u‖L2(ω)
‖u‖L2(ω)

+ t ‖h‖L2(Ω) ‖u‖L2(ω)
. (11)

Let ε1, ε2 ≥ 0 with ε = ε1 + ε2 for which there is a δ1 ∈ (0, 1] such that ε1 = δ1λ1. If
λ1 = 0 we choose δ1 = 1. Appropriately inserting the Poincaré—Steklov inequality into
(11) yields

((1 − δ1)λ1 + µ) ‖u‖2L2(ω)
+ δ1 ‖∇u‖2L2(ω)

≤ t((1− δ1)λ1 + µ− ε2) ‖u‖2L2(ω)
+

+ tL ‖∇u‖L2(ω)
‖u‖L2(ω)

+ t ‖h‖L2(Ω) ‖u‖L2(ω)
.

After rearranging the terms and dividing by t we get

((t−1 − 1)(λ1 − ε1 + µ) + ε2) ‖u‖2L2(ω)
+ t−1δ1 ‖∇u‖2L2(ω)

≤
≤ L ‖∇u‖L2(ω)

‖u‖L2(ω)
+ ‖h‖L2(Ω) ‖u‖L2(ω)

.
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Since (t−1 − 1)(λ1 − ε1 +µ) ≥ 0 and t−1δ1 ≥ δ1 we deduce with the help of the inequality
of arithmetic and geometric mean

ε2 ‖u‖2L2(ω)
+ δ1 ‖∇u‖2L2(ω)

≤ δ1 ‖∇u‖2L2(ω)
+
L2

4δ1
‖u‖2L2(ω)

+ ‖h‖L2(Ω) ‖u‖L2(ω)
(12)

i. e.

4δ1ε2 ‖u‖L2(ω)
≤ L2 ‖u‖L2(ω)

+ 4δ1 ‖h‖L2(Ω) .

If we set ε1 = min{ε/2, λ1} we easily see that 4δ1ε2 > L2 and thus we deduce that there
exists a ρ0 > 0 such that ‖u‖L2(ω)

≤ ρ0 ‖h‖L2(Ω). Inserting this in (11) we get the desired
a priori bound. �

4.2. Uniqueness. A second view on the proof of the Theorem 1 gives rise to a
uniqueness result for (2) if we assume the monotonicity condition

(f(x, s2, ξ2)− f(x, s1, ξ1))(s2 − s1) ≤ (λ1 − ε)(s2 − s1)
2 + L |ξ2 − ξ1| |s2 − s1| . (13)

Proposition 6. Let f satisfy the monotonicity condition (13). Then the Dirichlet problem
(2) has at most one weak solution.

Proof. Let us assume that there exist two solutions u1 and u2. Then u = u2 − u1 ∈
H1

0 (Ω) can serve as a test function for (2) with u replaced by u1 or u2. Then (13) leads to

‖∇u‖2L2(Ω) ≤ (λ1 − ε) ‖u‖2L2(Ω) + L ‖∇u‖L2(Ω) ‖u‖L2(Ω)

(∗)
≤

(∗)
≤ ‖∇u‖2L2(Ω) + (L− Lmax(ε, λ1)) ‖∇u‖L2(Ω) ‖u‖L2(Ω) .

We deduce u = 0. The second inequality (∗) follows from the Poincaré—Steklov inequality
and

Lmax(ε, λ1) ‖∇u‖L2(Ω) ‖u‖L2(Ω) ≤ δ1 ‖∇u‖2L2(ω)
+
Lmax(ε, λ1)

2

4δ1
‖u‖2L2(ω)

for δ1 = ε/(2λ1) if ε ≤ 2λ1 and δ1 = 1 else. �

4.3. A priori bounds in Lq∗∗(Ω). Proof of Theorem 2. Theorem 1 already
implies an a priori bound for the L2∗(Ω)-norm by the Sobolev embedding theorem. With
the help of Moser’s iteration method we also achieve bounds with respect to higher
order Lebesgue norms. We learned the Moser iteration technique from the proof of
[6, Theorem 8.15] and could generalize it to our situation. For equations of the form
−∆u = g ∈ Lq(Ω) on bounded domains and Robin boundary conditions see also [9,
Theorem 4.1].

(i) Making Moser iteration possible. For 2 ≤ r ≤ ∞ and 2 ≤ p ≤ q we define

M(r) = max{‖u‖L2(Ω) , ‖u‖Lr(Ω)} and ρ(p) =M(p) + ‖h‖Lp(Ω) .

By Lyapunov’s interpolation inequality1 for Lebesgue spaces we see thatM is an increasing
function. Moreover M : [2,∞] → [0,∞] is continuous. A standard test function argument
shows that the coerciveness condition (3) implies

M(2∗β)2β ≤ C1β
2ρ(p)M(p′(2β − 1))2β−1 (14)

1 Lyapunov’s inequality [10, Section 2.9]: ‖v‖Lr(Ω) ≤ ‖v‖1−θ
Lp(Ω)

‖v‖θLq(Ω) for all measurable functions

v if 1/r = (1 − θ)/p + θ/q where 0 < r, p, q ≤ ∞ and 0 ≤ θ ≤ 1.
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for all β ≥ 1 and 2 ≤ p ≤ q. Here 2∗ is equal to 2d/(d − 2) if d > 2, or some sufficiently
big number else. The constant C1 ≥ 1 only depends on d, δ and L.

For the proof of (14) one can make the same ansatz as in the proof of [6, Theorem
8.15] with k = 0. That is, we use a test function which is proportional to |u|2β−2 u for
small values |u(x)| and proportional to u for big values of |u(x)|. The crucial point in the
proof is the validity of the Sobolev embedding H1

0 (Ω) →֒ L2∗(Ω).
(ii) Moser iteration. We distinguish the two cases 2q < d and 2q > d.
Case 2q < d: For the beginning let us assume that 2 ≤ p < max{2∗, q}. By Sobolev’s

embedding theorem ρ(p) < ∞. Note that 2∗β = p′(2β − 1) is equivalent to 2∗β = p∗∗.
Thus (14) implies M(p∗∗) <∞ and therefore

M(p∗∗) ≤ C1

(
p∗∗

2∗

)2 (
M(p) + ‖h‖Lp(Ω)

)
. (15)

This yields ρ(p∗∗) < ∞. By iterating the preceding argument we get M(p∗∗) < ∞ for all
2 ≤ p < q and a uniform estimate holds. By the continuity of M this is also true for
p = q. By Lyapunov’s inequality at the cost of a bigger constant we can replace M(q) on
the right hand side of (15) by ‖u‖L2(Ω) and the claim follows.

Case 2q > d: From the first case we already know that M(r) <∞ for all 2 ≤ r <∞.
Thus ρ(q) < ∞. Let us recursively define the increasing sequence (βn) by β0 = 1, βn =
1
2 + χβn−1 where χ = 2∗

2q′ > 1. Then we deduce from (14) with p = q that

M(2∗βn) ≤ β1/βn
n (C1ρ(q))

1/(2βn)M(2∗βn−1)
1−1/(2βn).

Observe that 1− 1
2βn

= χβn−1

βn
. This gives immediately

M(2∗βN ) ≤
(

N∏

m=1

βχ
N−m

m

)1/(βN )

︸ ︷︷ ︸
C(N,d,q)

(C1ρ(q))
1−χN /βNM(2∗)χ

N/βN .

It is a simple exercise to show that

(a) χN/βN converges from above to θ = (2χ− 2)/(2χ− 1) ∈ (0, 1) and

(b) there exists a constant C(d, q) > 0 such that C(N, d, q) ≤ C(d, q).

Thus

M(2∗βN ) ≤ C2ρ(q)
1−χN/βNM(2∗)χ

N/βN .

The constant C2 depends on d, δ, L and q. Since M is continuous we may let N tend to
infinity and deduce from (b) that

M(∞) ≤ C2ρ(q)
1−θM(2∗)θ

for some θ = θ(d, q) ∈ (0, 1). Since M(2∗) ≤ M(∞) we may simply divide by M(∞)θ to
get M(∞) ≤ C3ρ(q). Now the claim follows as in the case 2q < d. �

4.4. Domination in Lq∗∗(Ω). Proof of Theorem 3. We only show the assertion
about the Dirichlet problem (9). The statement about (8) is proved similarly.
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Let us define the operator A with domain {v ∈ H1
0 (Ω) : ∆v ∈ L2(Ω)} which acts as

−∆− λ1 + ε. By the Poincaré—Steklov inequality this operator is invertible.
Furthermore let us define the nonlinear but continuous operator S : H1

0 (Ω) → L2(Ω)
by Sv = L |∇v|+ h. Then (9) is equivalent to the fixed point problem

v = A−1Sv =: Tv

for the operator T : H1
0 (Ω) → H1

0 (Ω). We apply Banach’s contraction mapping principle
to show existence and uniqueness of a solution. It is important to choose an appropriate
norm on H1

0 (Ω) which makes T a contraction mapping.
Let v1, v2 ∈ H1

0 (Ω) be arbitrary, ui := Tvi for i = 1, 2 and v := v2−v1 and u := u2−u1.
Then

〈Au, ϕ〉L2(Ω) = 〈Sv2 − Sv1, ϕ〉L2(Ω) ∀ϕ ∈ H1
0 (Ω).

Let ε1, ε2 ≥ 0 with ε = ε1 + ε2 for which there is a δ1 ∈ (0, 1] such that ε1 = δ1λ1. If
λ1 = 0 we choose δ1 = 1. From the last equation with ϕ = u ∈ H1

0 (Ω) follows

δ1 ‖∇u‖2L2(Ω) + ε2 ‖u‖2L2(Ω) ≤ αδ1 ‖∇v‖2L2(Ω) +
L2

4αδ1
‖u‖2L2(Ω)

for all 0 < α < 1 as in the derivation of (12) in the proof of Theorem 1. If we set
ε1 = min{ε/2, λ1} again we see that 4δ1ε2 > L2 and thus there exists an α, maybe close
to 1, such that ε′ := ε2 − L2

4αδ1
> 0. Thus we proved that T is a contraction mapping with

contraction constant
√
α with respect to the norm

(
δ1 ‖∇u‖2L2(Ω) + ε′ ‖u‖2L2(Ω)

)1/2
. This

shows that the Dirichlet problem (9) has a unique solution v.
It remains to show v ≥ 0 and u ≤ v for every solution u of (10). We only show the

more difficult second assertion. Therefore let w = (u − v)+ ∈ H1
0 (Ω) and g = (λ1 + µ −

ε)v + L |∇v|+ h ≥ 0. Let w serve as a test function for
{

−∆(u− v) + µ(u− v) ≤ tbσ(x, u,∇u)χω(x) − g(x) (x ∈ Ω),
u(x)− v(x) ≤ 0 (x ∈ ∂Ω).

It follows that

‖∇w‖2L2(Ω) + µ ‖w‖2L2(Ω) ≤ t

∫

ω

(bσ(x, u+,∇u+)− g)wdx ≤

≤ t

∫

ω

(λ1 + µ− ε)w2 + L |∇w|wdx ≤ (λ1 + µ− ε) ‖w‖2L2(Ω) + L ‖∇w‖L2(Ω) ‖w‖L2(Ω) .

As in the proof of Proposition 6 we deduce w = 0. This means u ≤ v. �

5. Proof of the main theorem. Now we prove Theorem 4. Observe that the
conditions (3) and (4) in conjunction with the Theorems 2 and 3 imply

|f(x, v(x), ξ)| ≤ f0(x) + L0 |ξ| ∀ v ≤ v ≤ v, ξ ∈ Rd, (16)

for some function f0 ∈ L2(Ω), f0 ≥ 0.
We divide the proof into three steps. In the first step we do not consider the actual

Dirichlet problem, but a truncated version of it. This truncation procedure makes it
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possible to apply Schaefer’s fixed point theorem in the locally convex space H1
loc(Ω) to

achieve the existence of a sequence of weak solutions of such truncated problems. This
will be the second step. In the last step we show that a subsequence converges to a weak
solution of (2). Such a pattern was applied in [11] to get an existence theorem for a
parabolic equation on an arbitrary open set.

(i) Truncation. It is well known that there is an increasing sequence of open sets (Ωk)
with C∞-boundary such that Ωk is compact and included in Ωk+1 and Ω, and such that
their union is Ω. Let σ : Ω × R → R be as in (10) but with v0 = v and v1 = v. For
µ > 0 such that λ1 + µ− ε ≥ 0 let us define the Caratheodory function bσ as in (10) and
b(x, s, ξ) = f(x, s, ξ) + µs. For v ∈ H1

loc(Ω) we consider the following truncated Dirichlet
problem

{
−∆u+ µu = bσ(x, v,∇v)χΩk (x) (x ∈ Ω),

u(x) = 0 (x ∈ ∂Ω).
(17)

(ii) Schaefer’s fixed point argument. From (16) we deduce that the Nemytskii operator
v 7→ bσ(x, v,∇v)χΩk is continuous from H1

loc(Ω) to L2(Ω) and maps ‖·‖H1(Ωk)
-bounded2

sets of H1
loc(Ω) into bounded sets in L2(Ω) (cf. [12, Theorem 19.2]). Thus (17) defines an

operator

Tk : H1
loc(Ω) → H1

0 ∩H2
loc(Ω) →֒ H1

loc(Ω) by Tkv = u.

It is a continuous mapping on the locally convex space H1
loc(Ω) and satisfies condition (ii)

in Theorem 5 for X = H1
loc(Ω), ‖·‖ = ‖·‖H1(Ωk)

and every ρ > 0. Let

Sk = {u ∈ H1
loc(Ω) : u = tTku for some 0 < t ≤ 1}

be the Schaefer set with respect to Tk. If we can show that Sk is ‖·‖H1(Ωk)
-bounded then

we get the existence of at least one fixed point uk = Tkuk for every k by Theorem 5. By
Theorem 1 an even stronger assertion is true:

u ∈ Sk ⇒ ‖u‖H1
0 (Ω) ≤ ρ,

for some constant ρ which does not depend on k. Therefore we get the existence of an
H1

0 (Ω)-bounded sequence (uk) of fixed points, as desired.
(iii) Convergence to a solution. By passing to a subsequence if necessary, we may

assume that uk converges weakly to some function u in H1
0 (Ω). Furthermore we may

assume that this convergence is also true in the pointwise sense (almost everywhere), since
the embedding H1

loc(Ω) →֒ L2,loc(Ω) is compact. By Theorem 3 we know that v ≤ uk ≤ v
for all k and therefore these functions satisfy

{
−∆uk + µuk = b(x, uk,∇uk)χΩk(x) (x ∈ Ω),

uk(x) = 0 (x ∈ ∂Ω).
(18)

By (16) the estimate ‖b(·, uk,∇uk)‖L2(Ω) ≤ ‖f0‖L2(Ω)+µρ+L0ρ is true for all k. Thus (18)
implies that (uk) is also bounded with values in the domain of the Dirichlet—Laplacian
which is embedded into H2

loc(Ω). Thus we may assume that (uk) also strongly converges

2 A subset of H1
loc(Ω) is called ‖·‖H1(Ωk)

-bounded if it is included in the ball {u ∈ H1
loc(Ω) :

‖u‖H1(Ωk)
< r} for some r > 0.
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in H1
loc(Ω) to u. Again by [12, Theorem 19.2] this implies that b(x, uk,∇uk) strongly

converges in L2,loc(Ω) to b(x, u,∇u) ∈ L2(Ω). The arguments above allow us to take the
limit k → ∞ in (18) which shows that u is a weak solution of (2). �

6. Can the bound for L be improved? It is clear that in general we lose the
existence of solutions for (2) if ε in condition (3) is allowed to be zero. Now we ask

• Do we also lose the existence of solutions if L ≥ Lmax(ε, λ1)?

Unfortunately we do not know the answer of this question. In some standard situations it is
not difficult to adopt the proof of Theorem 1 (which exclusively uses that L is bounded from
above) to get existence of solutions. For example if f(x, s, ξ) is of the form f1(x, s)−b(x) ·ξ
for some C1 vector field b with ∇ · b ≤ 0, then one can prove a priori bounds in H1

0 (Ω) in
the sense of Theorem 1 where C does not depend on b. This is due to 2

∫
Ω b · (∇u)udx ≥∫

Ω
∇ · (bu2)dx = 0 if u ∈ H1

0 (Ω). We remark that the structure condition ∇ · b ≤ 0 arises
in applications (see [13] and references therein).

The existence theorem in section 2.2 is stated only for real valued boundary value
problems. The only reason why we cannot extend it to elliptic complex valued problems
(or even systems) is that Theorem 3 (a priori domination) does not extend to this situation.
However, if we strengthen (7), an existence theorem can be formulated for complex
problems. Keeping this in mind we now consider a complex valued problem

{
−∆u+ ib · ∇u− (λ1 − ε)u = g(x) (x ∈ Ω),

u(x) = 0 (x ∈ ∂Ω),
(19)

where b ∈ Rd is a constant vector, g ∈ L2(Ω) and show

Theorem 7. Let r ≥ Lmax(ε, λ1) and d ≥ 2. Then there exists b ∈ Rd with |b| = r an
open set Ω and g ∈ L2(Ω) such that (19) has no solutions.

Proof. It is convenient to distinguish three cases: (i) λ1 = 0, (ii) ε ≤ 2λ1 and (iii)
0 < 2λ1 ≤ ε.

Case (iii): 0 < 2λ1 ≤ ε. We choose Ω = (0,
√
λ1π)× Rd−1. We write x = (x1, x

′) ∈ Ω
and similarly b = (b1, b

′). After taking Fourier transform

ũ(ζ, ξ) =

∫ √
λ1π

0

e−ix1ζu(x1, x
′)dx1 +

∫

Rd−1

e−ix
′ξu(x1, x

′)dx′

for ζ ∈
√
λ1Z and ξ ∈ Rd−1 we see that (19) is equivalent to
(
ζ2 + |ξ|2 − b1ζ − b′ · ξ − (λ1 − ε)

)

︸ ︷︷ ︸
=:p(ζ,ξ)

ũ = g̃ ∈ l2

(√
λ1Z

)
⊗2 L2(R

d−1), (20)

where a solution ũ must necessarily belong to l2(
√
λ1Z)⊗2 L2(R

d−1). It is possible to find
b ∈ Rd such that

b1 = 2
√
λ1 and |b| = r. (21)

Thus b/2 ∈
√
λ1Z and p(b/2) ≤ 0. Therefore we can find ξ ∈ Rd−1 such that p(

√
λ1, ξ) = 0,

and it is possible to find g̃ such that (20) has no solution. As a consequence (19) has no
solutions for the corresponding g.
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Case (i): λ1 = 0. When we interpret Ω from the third case as Rd, then the above
argumentation also works in this case if we choose b with |b| = r ≥ 2

√
ε arbitrary and

note that p(
√
εb/ |b|) ≤ 0.

Case (ii): ε ≤ 2λ1. Instead of (21) we choose b with b1 = ε/
√
λ1 and |b| = r ≥ ε/

√
λ1

arbitrary and note that p(
√
λ1, 0) = 0. �

Remark 8. We only used the fact that a weak solution of (19) has to be in H1(Ω) and
satisfies the equation in the sense of distributions. Therefore this example works not only
for Dirichlet boundary conditions.

7. Robin boundary conditions. We can generalize the problem (2) by considering
more general boundary conditions than merely Dirichlet boundary conditions. In the
following we treat Robin boundary conditions, which can be defined on arbitrary open sets
(cf. [9, 14, 15]). As a result of this section it turns out that a version of Theorem 4 remains
true for Robin boundary conditions under a strict positivity assumption. For general Robin
boundary condition we need an additional assumption (cf. (24)) which replaces the Sobolev
embedding theorem which is necessary to establish the a priori bounds in the Lebesgue
spaces by Moser iteration.

7.1. Definition of generalized Robin boundary conditions. Let µ be a
(positive) measure on the Borel σ-algebra of ∂Ω. We define the positive form

a(u, v) =

∫

Ω

∇u∇vdx +

∫

∂Ω

uvdµ (22)

with domain D(a) = {u ∈ H1(Ω) ∩ Cc(Ω)|
∫
∂Ω |u|2 dµ < ∞}. We write a(u) := a(u, u)

and equip D(a) with the norm (a(u) + ‖u‖2L2(Ω))
1/2. If a is closable (i. e. the completion

of D(a) embeds injectively into L2(Ω)) we may define a self-adjoint operator by

D(A) =
{
u ∈ V |∃g ∈ L2(Ω)∀v ∈ V : a(u, v) = 〈g, v〉L2(Ω)

}
, Au = −g,

where a denotes the closure of a. This operator acts as Au = ∆u ∈ L2(Ω). Thus D(A) ⊂
H2
loc(Ω), i. e. local maximal regularity does not depend on the specific boundary conditions

(see [6, Theorem 8.8]). Even if a is not closable there exists a (unique) maximal closable
positive form ar smaller than a in the following sense: The form ar is smaller than a, that
is D(a) ⊆ D(ar) and ar(u) ≤ a(u) for every u ∈ D(a), and every closable positive form b
which is smaller than a is also smaller than ar (see [16, Supplementary material, Theorem
S. 15]).

In [15] the authors give a characterization of ar by means of the relative capacity with
respect to Ω. The relative capacity for a (not necessarily Borel-) subset A ⊆ Ω is defined
by

CapΩ(A) = inf

{∫

Ω

(
|∇u|2 + |u|2

)
dx |u ∈ H̃1(Ω), ∃O ⊆ Ω relatively open :

A ⊆ O and u ≥ 1 a.e. on O

}

Here H̃1(Ω) denotes the closure of H1(Ω) ∩ C(Ω) in H1(Ω). The relative capacity is an
outer measure. A property is said to hold relatively quasi-everywhere (r.q.e.) if it holds
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on Ω\N where N is a set with CapΩ(N) = 0. Every u ∈ H̃1(Ω) has a r.q.e. unique
relatively quasi-continuous representative which we denote by ũ. This is a function ũ = u
a. e. on Ω such that for each ε > 0 there exists a relatively open subset ω ⊆ Ω with
CapΩ(Ω\ω) ≤ ε and ũ restricted to ω is continuous (see [17, Chapter I, Theorem 8.2.1]).
Let Γµ = {x ∈ ∂Ω|∃r > 0 : µ({y ∈ ∂Ω| |x− y| < r}) <∞} be the maximal open set where
µ is locally finite. For a Borel set S ⊆ Γµ we define aS to be the positive form with domain
D(aS) = D(a) which is given by (22) where the boundary integral over ∂Ω is replaced by
the same integral over S. Note that aS is smaller then a. The Borel set S ⊆ Γµ is called
µ-admissible if CapΩ(A) = 0 implies µ(A) = 0 for each Borel-subset A of S.

Theorem 9 ([14, 15]). There exists a µ-admissible set S ⊆ Γµ such that CapΩ(Γµ\S) = 0
and aS = ar. Moreover

D(aS) =

{
u ∈ H̃1(Ω)|ũ = 0 r.q.e on ∂Ω\S and

∫

S

|ũ|2 dµ <∞
}
,

aS(u, v) =

∫

Ω

∇u∇vdx+

∫

S

ũṽdµ.

S is unique up to a µ-null set.

In [15, Example 4.3] the authors constructed a bounded domain Ω such that ∂Ω
is not admissible for the (d − 1)-dimensional Hausdorff-measure σ although it has finite
measure with respect to σ. This shows that the maximal admissible set S given by the
above Theorem does not in general coincide with Γµ.

7.2. A generalized existence theorem. Let µ be a measure on the Borel σ-algebra
of ∂Ω and S the maximal µ-admissible set from Theorem 9. We consider the boundary
value problem





−∆u(x) = f(x, u(x),∇u(x)) (x ∈ Ω),
u(x) = 0 (x ∈ ∂Ω\S),

∂u
∂ν (x) + u(x)dµ(x) = 0 (x ∈ S).

(23)

We call u a weak solution of this problem iff u ∈ D(aS) and f(x, u,∇u) ∈ L2(Ω) such that

aS(u, ϕ) =

∫

Ω

f(x, u,∇u)ϕdx ∀ϕ ∈ D(aS).

Let 2 ≤ d̂ <∞ be a real number. We assume that

D(aS) →֒ Lp(Ω)

{
for p = 2d̂/(d̂− 2)+ if d̂ 6= 2

and for all p <∞ else.
(24)

All conditions on f remain unchanged as compared to Section 2 but (7) has to be
satisfied if and only if q < d̂/2, where we redefine q∗∗ = qd̂/(d̂− 2q)+. The (for simplicity)
excluded value for q is d̂/2 instead of d/2. Furthermore, λ1 ∈ [0,∞) is the optimal constant
such that λ1 ‖u‖2L2(Ω) ≤ aS(u) is true for all u ∈ D(aS).

Theorem 10. Under the above conditions the boundary value problem (23) has at least
one weak solution.
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It is not difficult to generalize Theorems 1, 2 and 3 and the argumentation in Section 5
to this more general setting. In fact, (24) replaces the Sobolev-embeddingH1

0 (Ω) →֒ L2∗(Ω)
which has to be used in step (i) of the proof of Theorem 2 and the following lemma
guarantees that the test function argument described there also works in our more general
situation:

Lemma 11. Let β ≥ 1 and t0 > 0. Let H(s) = |s|β−1
s for all real |s| ≤ t0. Extend H

affine linearly to a C1-function. Then

u ∈ D(aS) =⇒ H(u) ∈ D(aS) and H(ũ) = H(u)̃

where ũ and H(u)̃ denote the relatively quasi-continuous representatives of u and H(u)
respectively.

Proof. Essentially we only have to proof that H(ũ) is the relatively quasi-continuous
representative of H(u). But this is easy since if ũ is continuous on some set then so is H(ũ).
�

It is only left to find examples where (24) is true for some d̂. Of course, if ∂Ω satisfies a
uniform lipschitz condition then it is true for d̂ = d by the Sobolev embedding theorem.
But there are also other situations where (24) is true. For this purpose set dµ = β(x)dσ
where σ is the (d−1)-dimensional Hausdorff-measure restricted to ∂Ω. The Borel function
β is bounded from below, that is β(x) ≥ β0 > 0 for some constant β0. Then it is a
consequence of an inequality due to Maz’ya that (24) holds with d̂ = 2d. We refer to [15,
Chapter 5] for the short proof.

Remark 12. One could ask if the Lq∗∗ a priori bounds derived from (24) by Moser
iteration are the best possible. Indeed they are: [9, Theorem 5.11].
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