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In this paper, by using standard techniques we shall obtain results with relaxed hypothesis
which give zero bounds for the larger class of polynomials. Our results not only generalizes
several well-known results but also provide better information about the location of zeros.
We also obtain a similar result for analytic functions. In addition to this, we show by
examples that our result gives better information on the zero bounds of polynomials than
some known results.
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1. Introduction and statement of results. Various experimental observations
and investigations when translated into mathematical language lead to mathematical
models. The solution of these models could lead to problems of solving algebraic polyno-
mial equations of certain degree. The exact computation of zeros of polynomials of degree
at most four made possible by virtue of algorithms having been devised for such poly-
nomials, no such method is available for accomplishing the same task for polynomials of
higher degree. The impossibility of achieving this feat, or in other words, the impossibil-
ity of solving by radicals the polynomial equations of degree 5 or greater is an important
milestone in the history of mathematics, occasioned by ground breaking discoveries in
algebra by N.H. Abel and E. Galois in the first quarter of the nineteenth century. In
view of this and significant applications of zero bounds in scientific disciplines such as
stability theory, mathematical biology, communication theory and computer engineering,
it became interesting to identify the suitable regions in the complex plane which contain
the zeros of a given polynomial. A classical result due to Cauchy [1] on the distribution
of zeros of a polynomial may be stated as follows:

Theorem A. Let P(z) = 2" + an_12""1 4+ -+ + a1z + ap be a polynomial of degree
n, then all the zeros of P(z) lie in the disk |z| <14 maxo<;<n—1|a;l-

Although various results concerning the bounds for zeros of polynomials are avail-
able in literature [2], but the remarkable property of the bound in Theorem A which
distinguishes it from other such bounds is its simplicity of computations. However, this
simplicity comes at the cost of precision. The following elegant result on the location of
zeros of a polynomial with restricted coefficients is known as Enestrom — Kakeya Theo-
rem (see [2, 3]) which states that:
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Theorem B. Let P(2) = apz™ +an,_12"" 14+ +a1z+ag be a polynomial of degree
n with real coefficients satisfying an, > an—1 > -+ > a1 > ag > 0, then all the zeros of
P(z) lie in |z| < 1.

Joyal, Labelle and Rahman [4] extended Theorem B to polynomials whose coeffi-
cients are monotonic but are not necessarily non-negative and proved that:

Theorem C. Let P(z) = a,z" Fap_12"" 1+ -Faiz+ag be a polynomial of degree

n with real coefficients satisfying an > an—1 > -+ > a1 > ag, then all the zeros of P(z)
lie in |z] < an=aot|ao|

- [an|
Aziz and Zargar [5] relaxed the hypothesis in several ways and among other things

they proved the following results:

Theorem D. Let P(z) = apz" +an_ 12" 4+ a1z +ag be a polynomial of degree
n with real coefficients such that for some k > 1, ka, > ap—1 > -+ > a1 > ag, then all
the zeros of P(z) lie in |z + k — 1| < ken—cotlaol

lan]

In literature there exist several generalisations of above results (for reference see
[2, 3] and [6]). In this paper, we have obtained results with relaxed hypothesis which
give zero bounds for the larger class of polynomials as compared to the above discussed
Enestrom — Kakeya type results. In addition to this, we also obtained similar kind of
results of analytic functions. Our results not only generalizes several well-known results
but also provide better information about the location of zeros. We begin by proving the
following result:

n .
Theorem 1. Let P(z) = Y a;7, a; = «; + ivy; be a polynomial of degree n
=0

with complex coefficients such that for some kj > 1, ap—ji1 >0, j =1,2,...,7 where
1<r<n,

klan 2 k204n71 2 k3an72 2 et 2 kTOénferl 2 (077w 2 e 2 a1 2 Qq,

then all the zeros of P(z) lie in

Qn Qp—1
kr—1)— — (k2 — 1 <
z+ ( 1 )an ( 2 ) a <
1 r n—1
< || |:k’1an_(k2—1)|an—1|+2(2(kj_1)|an—j+1|+z |7j|> —ag+ |ao] + [7n] |-
n j=2 =

If all the coefficients of P(z) are real then the above theorem reduces to the following
result:

Corollary 1. Let P(2) = a,2" +a,_12" " +---+a1z+ag be a polynomial of degree
n with real coefficients such that for some kj > 1, ap—ji1 > 0, j = 1,2,...,7 where
1<r<n,

klan > k2an71 > k3an72 > > kranferl Zapy 2201 > ao,

then all the zeros of P(z) lie in

1 s
=1 (=Dt /] € (i (=Dl a2 305Dl or o Haol ).
j=2

|an
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Remark. For r = 2 and k3 = 1, Corollary 1 reduces to Theorem D and if k; =
1, j=1,2,...,r, then Corollary 1 reduces to Theorem C.

If we assume ag > 0 in Corollary 1, we get the following result:

Corollary 2. Let P(2) = a,2" +a,_12" " +---+a1z+ag be a polynomial of degree
n with real coefficients such that for some k; > 1, j =1,2,...,7 where 1 <r <n,

klan 2 k2an71 2 k3an72 2 te 2 kranfrJrl 2 Ap—r 2 e 2 ap 2 agp 2 07

then all the zeros of P(z) lie in

1 s
|Z +k—1— (k‘g — 1)an_1/an| < a— (klan — (k‘g — 1)an_1 + 2 Z(kj — 1)an_j+1>.

n =2

Now we turn to the study of the zeros of a class of analytic functions. In this direction,
we prove the following result:

0 .
Theorem 2. Let f(z) = ) a;27 # 0 be analytic in |z| < t. If for some ki, ko > 1,
j=0

kiag > kotar > t2as > t2a3 > ..., where a; >0, j =0,1,2,3...,
then f(z) does not vanish in the region

(k‘l — 1)a0t — (kg — 1)a1t2 < k‘laot + (kg - 1)a1t2
(2k1 — D)(ag + 2(ka — Daxt) |~ (2k1 — 1)(ag + 2(kz — L)agt)’

For ko = 1, Theorem 2 yields the following result of Aziz and Shah [7]:

Corollary 3. Let f(2) = > a;z7 # 0 be analytic in |z| < t. If for some k > 1,
§=0

kag > ta; > t?as > t3ag > ..., where a; >0, 7=0,1,2,3...,

then f(z) does not vanish in the region

(k- 1t kt
2k —1 2k —1°

For t = 1, Theorem 2 reduces to the following result:

Corollary 4. Let f(2) = > a;z7 # 0 be analytic in |z| < 1. If for some ki, ko > 1,
§=0

kiag > ka1 > a2 > ag >

> .. where a; >0, j=0,1,2,3...,
then f(z) does not vanish in the region

(kl — 1)a0 — (kg — 1)&1 kiag + (kg — 1)&1
(Qk‘l — 1)(&0 + 2(k2 — l)al) (Qk‘l — 1)(&0 + 2(/€2 — 1)a1)'
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2. Computations. In this section, we give some examples of polynomials to show
that Theorem 1 gives better information about the location of the zeros than Theorem A.
It is worth mentioning that all existing Enestrom — Kakeya type results are not applicable
for these polynomials.

Example 1. Let P(z) = 328 +2.827 +2.926 + 3.12° + 3.22 + 323 + 2.62%2 4+ 22 + 1.
By taking r» = 4 with ky = 16/15, ko = 8/7, ks = 32/29 and k4 = 32/31 in Theorem 1,
it follows that all the zeros of P(z) lie in the disc |z — 1/15] < 1.4667. Whereas, if we
use Theorem A, it follows that all the zeros of P(z) lie in the disc |z| < 2.0667. Thus,
Theorem 1 gives better bound, with 50 % improvement in the area over Theorem A.

Example 2. Let P(z) = 192% + 1823 + 2022 + 15z + 2. By taking r = 2 with
k1 =20/19 and k2 = 10/9 in Theorem 1, it follows that all the zeros of P(z) lie in the
disc |z—0.52| < 1.157. Whereas, if we use Theorem A, it follows that all the zeros of P(z)
lie in the disc |z] < 2.053. Thus, Theorem 1 gives better bound, with 68 % improvement
in the area over Theorem A.

3. Proof of the Theorems.
PrOOF OF THEOREM 1. Consider the polynomial

Fz)=(1-2)P(z) =
= —ap,2""! + (an — ap—1)2" + (-1 — an—2)2n71 +- o+ (ap—r —ap_r_1)2" -+
+ (a1 —ag)z+ a0 +i[(m —n-1)2" + (1 —a-2)2""+ -+ (n —0)2 + 7] =
= —a,z" + (k1o — koan—1 — (k1 — Day, + (k2 — Day—1)2"+
+ (koan—1 — kzan—2 — (ko — Dan—1 + (k3 — D)ay_2)2" ' + -+
+ (kr—10n—ri2 — kran—ri1 — (kre1 — Dario + (kr — Dap_ri1)2™ "2+
+(kprn—ri1—0n—p—(kp =)y 1) 2" " (i p—an_p1)2" "4 - A (a1 —ap ) 2o+

+i[(m = Yn-1)2" + (-1 = Ya—2)2"" + -+ (1 —0)2 + 0],

which implies,

|F(z)| = | — a2t — (k1 — Danz"™ + (k1o — kaan—1)2" + (k2 — Dap—12"+
+ (k2Oén71 - k304n72)2n_1 — (k‘g — l)an,lz"_l —+ (kg — 1)0[”,22"_1 4+ .o+
n—r+2__

+ (kala’ﬂ*TJrQ - kranfrJrl)Z
= (kp—1— 1)an—r+23n_T+Z + (ke — 1)a7L—r+1Zn_T+2 + (kron—ri1 — an_T)Z"_T‘H_
— (ky = Va1 2" 4 (e — Q1) 4+ (1 — o)z + a0t

+i[(Vn = Yn-1)2" + (Y1 — —2)2"""+ -+ (71 — 70)z + 0]

)

that is,

[F(2)] > |2["[|zan + (k1 — Doy — (k2 — Dan—_1|—

— (|k1on — kaan—1| + |k2on—1 — ksan—2|/|2|+
+ ke = Ulan—1l/|2] + ks = Ulen—2l/|z[ + - + [kr—10n—rs2 = kran—ria| /2] 2+
s = a2 l/1572 U = U1 /117 + eyt _rsr = an /Il
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+ 1k = Ul on—rga /2" + lon—r — an—ral /2]" + - + |oa — ol /2" + |aol /|2 +
+ 19 = =1l + 1 = ynal/l2l 4 P =0l /127 + ol 12]7)]-

By using hypothesis, we have for |z| > 1,

|F(2)] > |2|" [|zan + (k1 — Doy — (k2 — D)ap—1| — (k‘lan — kootp—1 -+ koou,—1 — k3o, o+
+ (k2 = D)|an—1| + (k3 = D]an—2| + -+ kr—10n 2 — kran 1+
+ (kr—1 = D|an—rq2| + (br — D]an—ry1| + kran—ri1 — anrt
+ (kr = Dlon—rs1| + an—p — apn—p—1+ -+ + a1 — ag + |ag|+
+ il + a4 b=l + ezl + -+ bl + Il + 1ol

implies,
o Oy 1
FEI ||z G = D2 = = )%= = e, = (k= Dlaoa+
r n—1
+2(Z<kj —1>|an_j+1|+2m|) —ao+|ao|+|’7n|H >0
Jj=2 7=0
if
« Oy 1
z + (k‘l — 1)—” — (k‘g — 1) Z ! > m {klan — (k‘g — 1)|C¥n_1|—|—
r n—1
+2(Z<kj —1>|an_j+1|+2m|) — a0+ [ao] + all.
j=2 §=0

This shows that those zeros of F'(z) whose modulus is greater than 1 lie in

o Oy 1
2t (k= 1) = (k= 1) =2 L < T {klan — (ky — V)| |+
r n—1
+2(Z<kj Dl gl + 3 m) — a0+ ol + all.
j=2 j=0

But those zeros of F(z) whose modulus is less than or equal to 1 already lie in this region.
Hence it follows that all the zeros of F'(z) and therefore of P(z) lie in

Qo Qp_1 1
ki —1)— — (k2 — 1 < —kiay — (ks — 1) |an,—
o G = D2 k= )22 < o [l (ks = Dlagal+
T n—1
#2( 00 = Dlaw-sial + X bl ) = a0+ ool + bl
j=2 j=0
This completes the proof of Theorem 1. (|
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PROOF OF THEOREM 2. Since f(z) = Z;io a;z’ is analytic in |z| < ¢ and it is easy

to observe that lim #/a; = 0. Now consider the function
j—o0

F(2) = (2 — t)f(2) = —tao + (ap — tay)z + (a1 — tas)z* + (az — taz)z® + - =
= —tag + (k‘lao — tkgal)z — ((kl — 1)0,0 — (k‘g — 1)ta1)z—|—
+((k2a1—tag)—(ka—1)a1)z*+(az—taz) 2>+ - - = —tag—((ky—1)ag—(ka—1)tar ) z+¢(2),

where ¢(2) = (krag — thaar)z + ((k2a1 — tag) — (k2 — )a1)22 + Y (aj—1 — ta;)z7.
=3
Clearly ¢(z) is analytic for |z| < ¢ with ¢(0) = 0. Moreover, for |z| = ¢

00
|¢(Z)| < |]€10,0 — tk2a1|t + |(l€20,1 — tag) — (k‘g — 1)G,1|t2 + Z |aj_1 — taj|tj <
j=3
< tkiag — t2k2a1 + t2k2a1 — tSG,Q + (kg — 1)t20,1 + tSG,Q — t40,3 + t4a3 — t5a4 + o=
= t(klao + (k‘g — 1)?5&1).

Therefore, by the Schwarz Lemma,
|p(2)] < (krag + (k2 — 1)tay)|z| for |z| <t.
Hence, for |z| < t,
|F(2)| > |tao + (k1 — 1)ag — (k2 — D)tay)z| — |k1ao + (k2 — 1)taq||z] > 0

if

|((k1 — 1)ao — (k2 — D)ta1)z + tao| > |k1ao + (k2 — 1)tas]|z],
that is, F'(z) and therefore f(z) does not vanish in

(krao + (k2 — Dtar)|z| < |((k1 — D)ag — (k2 — 1)ta1)z + tao|,

which is precisely the region

_ (k‘l — 1)a0t — (k‘g — 1)a1t2 < kiaot + (kg — 1)a1t2
(2k1 — 1)(ag + 2(ke — 1)azt) (2k1 — 1)(ag + 2(ka — Dagt)
That completes the proof of Theorem 2. O
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B sToit craThe ¢ MCHONB30BaHNEM CTaHIAPTHBIX METOIOB MOJIYyYEHBI PE3YIBTATHI C 0CIab-
JIEHHO! THIIOTE30, KOTOPbIE MAi0T IPAHUIBI HYJIel jisi GOJIBIIEro KJIacCa MHOIOYJIEHOB.
Pezynbrarer aBTOPOB He TOIBKO 0000INAIOT HEKOTOPBIE XOPOIIIO U3BECTHBIE PE3YJIBTATHI, HO
TaK’Ke JaioT 00ojIee TOYHYI0 HH(MOPMAIMIO O MECTOIIOJIOXKEHNN HyJIei. Takxke moryden ana-
JIOTUYHBIN Pe3yJIbTaT 18 aHAJIUTUIeCKUX DYHKIM. B momnosnnenne Kk 9ToMy Ha IpUMepax
IIOKA3aHO, YTO HOJIydeHa 6ojiee TOYHAA MHGMOPMAIU O TPAHUIAX HYJIeH ITOJIMHOMOB, €M
B HEKOTOPBIX M3BECTHBIX pabOTax.
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