
UDC 512.55 Вестник СПбГУ. Математика. Механика. Астрономия. 2021. Т. 8 (66). Вып. 3
MSC 16D10, 16D70

On a question concerning D4-modules

S.Das

Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore-641407, India

For citation: Das S. On a question concerning D4-modules. Vestnik of Saint Petersburg Uni-

versity. Mathematics. Mechanics. Astronomy, 2021, vol. 8 (66), issue 3, pp. 467–474.
https://doi.org/10.21638/spbu01.2021.308

An R-module M is called a D4-module if ‘whenever M1 and M2 are direct summands
of M with M1 + M2 = M and M1

∼= M2, then M1 ∩ M2 is a direct summand of M ’.
Let M = ⊕i∈IMi be a direct sum of submodules Mi with Hom(Mi,Mj) = 0 for distinct
i, j ∈ I . We show that M is a D4-module if and only if for each i ∈ I the module Mi is
a D4-module. This settles an open question concerning direct sums of D4-modules. Our
approach is independent of the solution obtained by D’Este, Keskin Tütüncü and Tribak
recently.
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1. Introduction. By a ring we mean an associative ring with an identity element;
modules are unitary.

A module M is said to be a SIP-module (SSP-module) if the intersection (respec-
tively, the sum) of two direct summands of M is a direct summand of M . Kaplansky
observed that over a commutative principal ideal domain every free module is a SIP-
module (see [1, Exercise 51(a), p. 49].) SIP-modules and SSP-modules have been exten-
sively studied (see, for example, [2–4] and [5]).

For 1 ≤ i ≤ 4, a module M is called a Di-module if it satisfies the condition Di
noted below.

D1. For every submodule A of M , there is a decomposition M =M1⊕M2 such that
M1 ≤ A and A ∩M2 is small in M2.

D2. If A ≤M such that M/A is isomorphic to a direct summand of M , then A is a
direct summand of M .

D3. If M1 and M2 are direct summands of M with M1 +M2 = M , then M1 ∩M2

is a direct summand of M .

D4. If M1 and M2 are direct summands of M with M1 +M2 = M and M1
∼= M2,

then M1 ∩M2 is a direct summand of M .

(For a detailed background of these notions, we refer to [6, Chapter 4] and to [7].)
A module M is also called a lifting module if it satisfies condition D1 (see [8] for

detailed information regarding these modules). We recall the characterization “the ring
R is semiperfect if and only if R is lifting as a right (or left) R-module” (see [9, Theo-
rem 1.2.13]). Now let R be a commutative domain with zero Jacobson radical which is not
a field, and hence is not semiperfect. Then, by the above results, RR is a projective mod-
ule which is not a D1-module. We have, however, projective =⇒ quasi-projective =⇒
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D2-module =⇒ D3-module =⇒ D4-module (see [6, Proposition 4.38 and Lemma 4.6]).
Note that for all proper subgroups N of the (indecomposable) Prüfer p-group M = Zp∞ ,
the group M/N is isomorphic to M . Hence it is D3 (as a Z-module) but not D2. In fact,
there are rings over which every cyclic module is D3 but not all cyclic modules are D2
(see [10, Example 6.4]).

There is no known example of a module which is D4 but not D3 [11] (see also [12,
p. 2]).

Let A and B be right R-modules. A homomorphism f ∈ HomR(A,B) is said to be
(von Neumann) regular (briefly, regular) if for some homomorphism g ∈ HomR(B,A),
we have the relation f = fgf . It is well-known that a homomorphism f ∈ HomR(A,B)
is regular if and only if Ker(f) is a direct summand in A and Im(f) is a direct summand
in B.

Recall that a module M is called a Rickart module if the kernel of any endomor-
phism f ∈ EndR(M) is a direct summand in M . It follows from [13, Proposition 2.16]
that every Rickart module is a SIP-module. A module M is called a dual Rickart module
if the image of any endomorphism f ∈ EndR(M) is a direct summand in M . It follows
from [14, Proposition 2.11] that every dual Rickart module is a SSP-module.

2. Results. We begin with the recall of some results from [15].

Lemma 1 [15, Lemma 2.1]. Let M be a right R-module, f, g ∈ EndR(M) be regular
homomorphisms, and let

M = Ker(f)⊕A = Im(f)⊕B,M = Ker(g)⊕A′ = Im(g)⊕B′.

Then the following assertions hold:

(a) Im(fg) = f(A ∩ (Im(g) +Ker(f)));

(b) Ker(fg) = (g|A′)−1(Im(g) ∩Ker(f)) +Ker(g).

Lemma 2 [15, Lemma 2.2]. Let M be a right R-module, π be the projection onto the
first direct summand with respect to the decomposition M = A1 ⊕ A2, and let π′ be the
projection onto the first direct summand with respect to the decomposition M = B1⊕B2.
Then the following assertions hold:

(a) Im(π′π) = (A1 +B2) ∩B1;

(b) Ker(π′π) = (A1 ∩B2) +A2.

Proposition 1 [15, Theorem 2.3]. For a right R-module M , the following conditions
are equivalent.

1. M is a SSP-module.

2. For any two regular homomorphisms f, g ∈ EndR(M), the module Im(fg) is a
direct summand of the module M .

Proposition 2 [15, Theorem 2.4]. For a right R-module M, the following conditions
are equivalent.

1. M is a SIP-module.
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2. For any two regular homomorphisms f, g ∈ EndR(M), the module Ker(fg) is a
direct summand of the module M .

Next we note examples of finite abelian groups which are not D4.

Example. Consider M = Z/2Z ⊕ Z/4Z as a Z-module. Then A = (1̄, 3̄)Z and
B = (0̄, 3̄)Z are isomorphic direct summands of M . However, A ∩ B is not a direct
summand of M . In fact, for any prime p, consider M = Z/pmZ⊕Z/pnZ with n > m as a
Z-module, then M is not a D4-module, since there is an epimorphism Z/pnZ −→ Z/pmZ

whose kernel is not a direct summand of Z/pnZ.

The following theorem is an analogue of [15, Theorem 3.3].

Theorem 1. For a right R-module M , consider the following statements.

1. M is a D3-module.

2. For any two regular endomorphisms f, g ∈ EndR(M), if Im(fg) is a direct sum-
mand of the module M , then the module Ker(fg) is a direct summand of the module M .

3. For any two regular endomorphisms f, g ∈ EndR(M) satisfying the following:

(i) Im(fg) is a direct summand of the module M ,

(ii) Ker(f) ∼= Im(g),

then the module Ker(fg) is a direct summand of the module M .

4. M is a D4-module.

5. For any two regular endomorphisms f, g ∈ EndR(M) satisfying the following:

(i) Im(fg) is a direct summand of the module M ,

(ii) N+Ker(f) ∼= Im(g) for any direct summand N of M such that N ∩Ker(f) = 0,

then the module Ker(fg) is a direct summand of the module M .

Then (1) ⇔ (2) ⇒ (3) ⇒ (4) ⇒ (5).

Proof. (1) ⇔ (2) follows from [15, Theorem 3.3].

(2) ⇒ (3) is clear.

(3) ⇒ (4). Let M = A⊕A′ = B ⊕B′, where A+B =M and A ∼= B. Consider the
natural projections π1 : A ⊕ A′ −→ A and π2 : B ⊕ B′ −→ B′. Then by Lemma 2(a),
Im(π2π1) = B′ is a direct summand of M . Therefore by assumption and Lemma 2(b),
Ker(π2π1) = (A ∩B)⊕A′ is a direct summand of M . This shows that A∩B is a direct
summand of M , as required.

(4) ⇒ (5). Let

M = Ker(f)⊕A = Im(f)⊕B = Ker(g)⊕A′ = Im(g)⊕B′.

By Lemma 1(a), since f |A is an isomorphism (Im(g)+Ker(f))∩A is a direct summand
of M . Therefore, A = N⊕ (Im(g)+Ker(f))∩A, for some N ≤ A. Since (N +Ker(f))+
Im(g) = M , N + Ker(f) ∼= Im(g) and M is a D4-module, we have (N + Ker(f))∩
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Im(g) = (Ker(f) ∩ Im(g)) is a direct summand of M . Since g|A′ : A′ −→ Im(g) is an
isomorphism, we have (g|A′)−1(Im(g) ∩ Ker(f)) is a direct summand of M . Hence by
Lemma 1(b), Ker(fg) is a direct summand of M . �

Recall that a module M is called a C3-module if A and B are direct summands in
M with A ∩B = 0, then A⊕B is a direct summand in M .

Following Ding et al. [16, Theorem 2.2(5)], a module M is called a C4-module if A
and B are isomorphic direct summands in M with A ∩ B = 0, then A ⊕ B is a direct
summand in M . Clearly C3-modules are C4-modules. However, there are examples of
C4-modules which are not C3.

The following theorem is an analogue of [15, Theorem 3.1].

Theorem 2. For a right R-module M , consider the following statements.

1. M is C3-module.

2. For any two regular endomorphisms f, g ∈ EndR(M), if Ker(fg) is a direct sum-
mand of the module M , then the module Im(fg) is a direct summand of the module M .

3. For any two regular endomorphisms f, g ∈ EndR(M) satisfying the following:

(i) Ker(fg) is a direct summand of the module M ,

(ii) Ker(f) ∼= Im(g),

then the module Im(fg) is a direct summand of the module M .

4. M is a C4-module.

5. For any two regular endomorphisms f, g ∈ EndR(M) satisfying the following:

(i) Ker(fg) is a direct summand of the module M ,

(ii) N ∼= Im(g) for any direct summand N of Ker(f),

then the module Im(fg) is a direct summand of the module M .

Then (1) ⇔ (2) ⇒ (3) ⇒ (4) ⇒ (5).

Proof. (1) ⇔ (2) follows from [15, Theorem 3.1].

(2) ⇒ (3) is clear.

(3) ⇒ (4). Let M = A ⊕ A′ = B ⊕ B′, where A ∩ B = 0 and A ∼= B. Consider the
natural projections π1 : A ⊕ A′ −→ A and π2 : B ⊕ B′ −→ B′. Then by Lemma 2(b),
Ker(π2π1) = A′ is a direct summand of M . Therefore by assumption and Lemma 2(a),
Im(π2π1) = (A+B) ∩B′ is a direct summand of M . Since A+B = B ⊕ (A+B) ∩B′,
A+B is a direct summand of M , as required.

(4) ⇒ (5). Let

M = Ker(f)⊕A = Im(f)⊕B = Ker(g)⊕A′ = Im(g)⊕B′.

By Lemma 1(b), (g|A′)−1(Im(g) ∩Kerf) is a direct summand of A′. Since g|A′ : A′ −→
Im(g) is an isomorphism and Im(g) is a direct summand of the module M , we have
that Im(g) ∩ Ker(f) is a direct summand of the module M. Therefore, Ker(f) =
N ⊕ (Im(g) ∩Ker(f)), for some N ≤M . Since N ∩ Im(g) = 0, N ∼= Im(g) and M is a

470 Вестник СПбГУ. Математика. Механика. Астрономия. 2021. Т. 8 (66). Вып. 3



C4-module, we have N ⊕ Im(g) is a direct summand of M . Since Ker(f) ≤ Im(g)⊕N ,
we have that

Im(g)⊕N = Ker(f)⊕ (Im(g) +N) ∩ A = Ker(f)⊕ (Im(g) +Ker(f)) ∩ A.

Therefore, (Im(g) + Ker(f)) ∩ A is a direct summand of M . Hence by Lemma 1(a),
Im(fg) is a direct summand of M . �

We can now prove the following result which has already appeared in [17, Proposi-
tion 5.7 and Corollary 2.9]. The proof has been outlined by us for the sake of completeness.

Proposition 3. For a right R-module M, the following conditions are equivalent.

1. M is a D4-module and a SSP-module.

2. M is a C3-module and a SIP-module.

3. M is a C4-module and a SIP-module.

4. M is a D3-module and a SSP-module.

5. M is an SSP-module and a SIP-module.

Proof. (1) =⇒ (2). Let M be a SSP-module. It is clear that M is a C3-module.
To see that M is a SIP-module, we shall use Proposition 2. Let f, g ∈ EndR(M) be two
regular endomorphisms such that

M = Ker(f)⊕A = Im(f)⊕B = Ker(g)⊕A′ = Im(g)⊕B′.

We need to show that Ker(fg) is a direct summand of M . By Lemma 1(b), enough to
show that Im(g)∩Ker(f) is a direct sumand of M . To this end we shall follow the proof
of [3, Proposition 1.4]. Let π1 : Im(g) ⊕B −→ Im(g) and π2 : Ker(f)⊕ A −→ Ker(f)
be the natural projections. Define θ = ((π1 − 1) ◦ π2)|Im(g) : Im(g) −→ B′. Then by [2,
Proposition 1.4], Im(θ) is a direct summand of B′. Hence M being a D4-module (use [7,
Theorem 2.2]), we have Ker(θ) = (Im(g) ∩Ker(f))⊕ (Im(g) ∩A) is a direct summand
of Im(g). Thus Im(g) ∩Ker(f) is a direct sumand of M , as desired.

(2) =⇒ (3) is clear.

(3) =⇒ (4). Let M be a SIP-module. It is clear that M is a D3-module. To see
that M is a SSP-module, we shall use Proposition 1. Let f, g ∈ EndR(M) be two regular
endomorphisms such that

M = Ker(f)⊕A = Im(f)⊕B = Ker(g)⊕A′ = Im(g)⊕B′.

We need to show that Im(fg) is a direct summand ofM . By Lemma 1(a), enough to show
that Im(g)+Ker(f) is a direct sumand of M . To this end we shall follow the proof of [5,
Theorem 8]. Let π1 : Ker(f)⊕A −→ Ker(f) and π2 : Im(g)⊕B′ −→ B′ be the natural
projections. Define φ = (π2 ◦ π1)|Im(g) : Im(g) −→ B′. Then by [3, Proposition 1.4],
Ker(φ) is a direct summand of B′. Hence M being a C4-module (use [16, Theorem 2.2]),
we have Im(φ) = [Im(g)+Ker(f)]∩ [Im(g)+A]∩B′ is a direct summand of Im(g). So
we can write M = Im(φ) ⊕X for some X ≤ M . Hence B′ = Im(φ) ⊕ (B′ ∩ X). Then
we have M = [Im(g) +Ker(f)]⊕ [(Im(g) +A) ∩ (B′ ∩X)], as required.

(4) =⇒ (5) follows from Proposition 2 and Theorem 1.
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(5) =⇒ (1) is clear. �

The following result extends [15, Lemma 4.2(2)].

Proposition 4. Let M be a dual Rickart module. If M is a D4-module, then the
product of any two regular elements in the ring EndR(M) is a regular element.

Proof. It follows from the hypothesis and Proposition 3 that M is a SSP-module
and a SIP-module. Hence the result follows from [15, Theorem 2.7]. �

The following theorem was proved in [17].

Theorem 3 [17, Theorem 5.6]. Let M = ⊕i∈IMi be a direct sum of submodules Mi.
If N = ⊕i∈I(N ∩Mi) for every submodule N of M , then M is a D4-module if and only
if for each i ∈ I, Mi is a D4-module.

In [17], immediately after Theorem 3 the following question was asked.

Question (see [17, Question, p. 4494]). It is known that if N = ⊕i∈I(N ∩Mi) for
every submodule N of M , then Hom(Mi,Mj) = 0 for every i 6= j in I, so it is natural
to ask if [17, Theorem 5.6] (that is the theorem above) remains true if one assumes that
Hom(Mi,Mj) = 0 for every i 6= j in I.

In the next proposition we show that Question above has a positive answer.

Proposition 5. Let M = ⊕i∈NMi be a direct sum of submodules Mi in which
Hom(Mi,Mj) = 0 for every i 6= j. Then the following assertions hold:

(i) if M is a D4-module, then for each i ∈ I, Mi is a D4-module,

(ii) if each Mi is a D4-module, then M is a D4-module.

Proof. (i). Since a direct summand of a D4-module is a D4-module (see [7, Propo-
sition 2.11]), for every i ∈ N, Mi is a D4-module if M is a D4-module.

(ii). By hypothesis and [18, the paragraph before Corollary 16.5], we have

EndR(M) ∼=




EndR(M1) 0 0 ·· ··
0 EndR(M2) 0 ·· ··
: : : : :
0 0 ·· EndR(Mn) ··
: : : :

. . .




N×N

.

Take two regular elements f , g in EndR(M) such that Im(fg) is a direct summand of
M and Ker(f) ∼= Im(g). Then f = (fi)i∈N and g = (gi)i∈N for some regular elements fi
and gi in EndR(Mi) such that Im(figi) is a direct summand of Mi and [Xi+Ker(fi)] ∼=
Im(gi) for any direct summand Xi of Mi such that Xi ∩Ker(fi) = 0 for all i ∈ N. But
then each Mi is a D4-module. Therefore by Theorem 1, Ker(figi) is a direct summand
of Mi for all i ∈ N. Hence Ker(fg) is a direct summand of M , as required. �

Remark. Let {pi}i∈N be an infinite set of prime numbers and let p be a prime
different from any of them. Then we have the following examples of D4-modules:

(i) M = Zp∞ ⊕ (⊕i∈N Z/piZ) as a Z-module, where Zp∞ is the Prüfer p-group;

(ii) M = Q ⊕ (⊕i∈N Z/piZ) as a Z-module.
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К вопросу о D4-модулях
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R-модуль M называется D4-модулем, если всякий раз, когда M1 и M2 являются пря-
мыми слагаемыми M с M1+M2 = M и M1

∼= M2, то M1\M2 является прямым слагае-
мым M . Пусть M =

⊕
i∈I

Mi — прямая сумма подмодулей Mi с Hom(Mi;Mj) = 0 для
различных i, j ∈ I . Показано, что M является D4-модулем тогда и только тогда, когда
для каждого i ∈ I модуль Mi является D4-модулем. Это решает открытый вопрос о
прямых суммах D4-модулей. Наш подход не зависит от решения, полученного недавно
Д’Эсте, Кескином Тютюнджу и Трибаком.

Ключевые слова: SIP-модули, D4-модули.
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