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space and presented Perov contraction condition where the contractive constant is replaced
by a matrix with nonnegative entries and spectral radius less than 1. Azam et al. pre-
sented the notion of rectangular cone metric space following the idea of Branciari, Huang
and Zhang by replacing the triangular inequality in the cone metric space by rectangu-
lar inequality. Motivated by the work of Abbas and Vetro and Radenovié, the purpose of
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common fixed point result for such mappings on a complete rectangular cone metric space.
Furthermore, an example is also presented to demonstrate the validity of our results. Our
results extend, unify and generalize various comparable results in the existing literature.
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1. Introduction. Let (X,d) be a metric space. A mapping T : X — X is called
a contraction if there exists a constant k € [0,1) such that for any z,y € X, we have
d(Tz,Ty) < kd(x,y). The famous Banach contraction theorem [1] states that a contrac-
tion mapping on a complete metric space has a unique fixed point, that is, there exists
a point z in X such that = Tx. The set of all fixed point of T" is denoted by Fix(T).
Banach contraction principle and its variants have various applications in many areas of
mathematics and related disciplines such as differential equations, optimization theory,
computer science, economics and telecommunication (see, e.g., [2]). This intrigued sev-
eral mathematicians to extend Banach contraction theorem to different directions. One
such way is to extend the domain of a mapping.

Branciari [3] gave the notion of rectangular metric spaces by replacing the triangular
inequality, that is, d(x,y) < d(z, z) + d(z,y) for z, y, z in X by a rectangular inequality,
ie,d(z,y) <d(z,u)+d(u,w)+d(w,y) for any z, y, z, win X, u # v and u,v € X\{z, y}.
Since then, many authors have established various fixed point theorems in rectangular
metric spaces. For more results in this direction under different contractive conditions,
we refer to [4-10]. In an ordinary metric space X, for any two points in an abstract set X
there is a positive real number that measures the distance between them. On the other
hand, if X is an arbitrary set and the set R is replaced with a set E equipped with
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some order structure, whereas the distance mapping d : X x X — FE satisfies properties
analogous to the conditions of ordinary metric d : X x X — R, then the notion of a
metric can be extended in several ways. For example, if £ = C the set of all complex
numbers, then we have the concept of a complex valued metric space [11], if E = R",
we have the notion of a generalized metric space. If E is a topological vector space, we
obtain the vector-valued metric space [12]. If E is a C*-algebra, then we obtain the C*-
algebra valued metric space [13]. Later, the concept of K-metric spaces was introduced
by taking E as a real Banach space [14]. In 2007, Huang and Zhang [15] rediscovered
the notion of K-metric space under the name cone metric space. The reader interested
in fixed and common fixed point results in the setup of cone metric spaces is referred to
[16-18].

In 1964, Perov [19] studied the Banach contraction principle in the framework of a
generalized metric space and presented Perov contraction condition where the contractive
constant is replaced by a matrix with nonnegative entries and spectral radius less than 1.
He also obtained some fixed point theorems with various applications in coincidence
problems, coupled fixed point problems and systems of semilinear differential inclusions
[19, 20]. It must be noted that this generalized metric space is a special case of a normal
cone metric space. Azam et al. [21] presented the notion of rectangular cone metric
space following the idea of Branciari and Huang and Zhang by replacing the triangular
inequality in the cone metric space by rectangular inequality. They also studied the fixed
point results for both Banach and Perov type contractions in rectangular cone metric
spaces. Shukla et al. [22] proved a generalized Banach fixed point theorem for the setting
of cone rectangular Banach algebra valued metric spaces.

Recently, Radenovié¢ and Vetro [23] introduced the notion of Sehgal —Guseman —
Perov type mappings and established a result of existence and uniqueness of fixed points
for this class of mappings. Vetro and Radenovié¢ [24] studied fixed point results under
various Perov type contractive conditions in rectangular cone metric spaces. Markin [25]
initiated the study of fixed points for multivalued contractions and nonexpansive maps
using the Hausdorff metric. He also developed an interesting and rich fixed point theory
for multivalued maps having applications in control theory, convex optimization, differ-
ential inclusions and economics. The concept of multivalued contractions was initiated
by Nadler [26]. He showed that a multivalued contraction possesses a fixed point in a
complete metric space. Later several generalizations of Nadler’s fixed point theorem were
obtained (see, [27, 28]).

Latif and Beg [29] extended Kannan mappings to multivalued mappings and intro-
duced the notion of a K-multivalued mapping. The term R-multivalued mapping as a
generalization of K-multivalued mapping was presented by Rus [30]. Abbas and Rhoades
[31] introduced the notion of a generalized R-multivalued mappings and established com-
mon fixed point results for such mappings. Recently, in 2020 Altun and Olgun [32] have
introduced the concept of F-contraction on vector-valued metric space. Then they proved
a fixed point result that includes the famous Perov fixed point theorem as properly. They
provided a nontrivial and illustrative example showing this fact.

Motivated by the work of Abbas et al. [33] and Vetro and Radenovié [24], the purpose
of this paper is to introduce a new class of Perov type multivalued mappings and present a
common fixed point result for such mappings on a complete rectangular cone metric space.
Furthermore, an example is also presented to demonstrate the validity of our results. Our
results extend, unify and generalize various comparable results in the existing literature
[3-5, 34] and [6].
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2. Preliminaries. Let FE be a real Banach space. A subset P of FE is called a cone
if and only if:

1) P is nonempty, closed and P # {0} (where 6 is the zero element of F);
2) a,b € R, a,b> 0 and z,y € P implies that ax + by € P;
3) PN (—P)=1{0}.

Partial ordering on F is defined with help of a cone P as follows: z < y if and only
if y —x € P. We shall write z < y to indicate that < y but z # y and = < y stands for
y—x € intP, where int P denotes the interior of P. A cone P is normal or semi monotone

if
inf {[lz +y| : z,y € P and |[zf| = [jy| =1} >0

or equivalently, if there is a number K > 0 such that for all z,y € P, 0 <z < y
implies that ||z|| < K |ly||. The least positive number satisfying the above inequal-

ity is called a normal constant of P. If z = (xl,xg,...,xn)T, y = (yl,y27...yn)T €
R™, then @ < b means that a; < b;, ¢ = 1,...,n. In this case, the set P =
{:U = (x1,.. .,xn)T ER:ax; >0fori=1,2,.. .,n} is a normal cone with the normal

constant K = 1. A cone P is called solid if it has a nonempty interior i.e. intP # (.

Definition 2.1. Let X be a nonempty set. A mapping d : X x X — E is said to be
a cone metric on X if for any x,y, 2z € X, the following conditions hold:

1) 0 < d(x,y) for all z,y € X and d(z,y) = 0 if and only if x = y;
2) d(z,y) = d(y, z);
3) d(z,y) 2 d(x, 2) +d(z,y).

The pair (X,d) is called a cone metric space. If E = R™, then a nonempty set X
with a vector valued metric d is called a generalized metric. The concept of a cone metric
space is more general than that of a metric space.

Lemma 2.2 [35]. Let (X,d) be a cone metric space over a cone P in E. Then one
has the following:

(i) intP + intP C intP and pintP CintP, p > 0;

¢
(ii) for any given ¢ > 0 and co > 0, there exists ng € N such that 2« c;
no

(iil) if an, by, are sequences in E such that a, — a, b, — b and an, =< by, for alln > 1,
then a < b.

The following is a crucial result.

Lemma 2.3 [36]. Let (X, d) be a cone metric space. Then for each ¢ € E with ¢ > 0,
there exists o > 0 such that (c — x) € IntP (i.e. x < ¢) whenever ||z|| < o, z € E.

Definition 2.4. Let X be a nonempty set. A mapping d : X x X — F is called a
rectangular cone metric on X if it satisfies the following conditions:

(b1) d(u,v) = 6 for all u,v € X and d(u,v) =6 if and only if u = v;
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(b2) d(u,v) = d(v,u) for all u,v € X;

(b3) d(u,v) = d(u,z) + d(z,w) + d(w, v) for all u,v € X and for all distinct points
w,z € X\ {u,v}.

Then the pair (X, d) is called a rectangular cone metric space over cone P.

Definition 2.5. Let (X, d) be a rectangular cone metric space over a solid cone P
and {u,} a sequence in X. We say that

(I) {un} is a Cauchy sequence if for every ¢ € E with ¢ > 6, there is an n(c) € N
such that for all n,m > n(c), d(tn, um) < ¢;

(IT) {uy,} is a convergent sequence if for every ¢ € FE with ¢ > 6, there is an n(c) € N
such that for all n > n(c), d(un,u) < ¢ for some u € X.

If the sequence {u,} converges to u, we denote u,, ¢ u. A cone metric space X is
said to be complete if every Cauchy sequence in X is convergent in X.
If P is a normal solid cone, then u, ¢ w if and only if d(tun,u) = 0 and {u,} is a

Cauchy sequence if and only if d(uy,, u,) — 6 as n,m — +o0.

Example 2.1 [24]. Let £ = R? and P = {v = (v1,v2) € E:v; >0 for j = 1,2}.
Clearly, P is a normal solid cone with normal constant K = 1. If X = N and d(v,v) =
(0,0) for all v € X, d(2,3) = d(3,2) = (5,11) and d(v,u) = (2,4) otherwise, then d is a
rectangular cone metric on X. Clearly, (X, d) is not a cone metric space because it does
not satisfy the triangular inequality. Indeed, we have

d(2,3) < d(2,5) + d(5, 3) gives that (5,11) = (2,4) 4+ (2,4) which is not true.

Lemma 2.6 [24, 37]. Let E be a real Banach space and P C E a solid cone. Let
v,w,z € E and {a,} C E. Then, we have the following properties:

(i) if z 2w and w K v, then z K v;
(i) if 0 = z < ¢ for each c € intP then z =6,

(iii) if ¢ € intP and a, — 0, then there exists n(c), such that for all n > n(c), we
have a, < c.

Definition 2.7 [38]. Let E be a topological vector space with a solid cone P and
{u,} a sequence in P. We say that {u,,} is a c-sequence if for every ¢ € intP, there exist
n(c) € N such that u,, < ¢ for all n > n(c).

Remark 2.8. Let (X,d) be a rectangular cone metric space over a solid cone,
{up} C X and u € X:

(i) the sequence {u,} converges to u if and only if {d(u,,u)} is a c-sequence;

(ii) if there exist a c-sequence {vy,} such that d(um,un) = v, for all m € N and
n > m, then {u,} is a Cauchy sequence.

The following proposition shows that the notion of c-sequence can be given by using
< or < instead of < .

Proposition 2.9 [39]. Let P be a solid cone in a topological vector space E and
{un} a sequence in P. Then the following conditions are equivalent:
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(i) {un} is a c-sequence;

(i) for each ¢ > 6, there exists n(c) € N such that u, < c for n > n(c);
(iii) for each ¢>> 0, there exists n(c) € N such that u, < ¢ for n > n(c);
(

iv) there exists ¢ > 6 such that for any A € (0,1), there is n(\) € N such that
U X A for all n > n(N);

(v) there exists a sequence {v,} such that v, > 0 for any n € N, v,, — 6 and for
any n € N, there exists n(c) € N such that vy, =< v, for each m > n(c).

Lemma 2.10 [40]. Let E be a real Banach space, P C E a cone and A a linear
operator on E. Then the following conditions are equivalent:

(i) A is nondecreasing, i. e., u < v implies that A(u) < A(v);
(ii) A s positive, i.e., A(P) C P.

We denote by M, ,, the set of all n x n matrices, and by M, ,,(R"), we mean the set
of all n x n matrices with nonnegative elements. It is well known that if A € M,, ,,, then
A(P) C P if and only if A € M, ,(RT). We write © for the zero n x n matrix and I,
for the identity n x n matrix. For the sake of simplicity we will identify row and column
vector in R"”. A matrix A € M, ,(R") is said to be convergent to zero if A" — O as
n — 0o.

Following is the extension of Lemma 2.3 in the setting of rectangular cone metric
space which can be easily proved.

Lemma 2.11. Let (X, d) be a rectangular cone metric space. Then for each ¢ > 0,
c € E, there exists o0 > 0 such that (c—z) € intP (i.e. x < ¢) whenever ||z|| < o, x € E.

Theorem 2.12 [19, 20]. Let (X, d) be a complete generalized metric space, f : X —
X and A € M, ,(R") a matriz convergent to zero such that d(f(z), f(y)) = A(d(z,y))
holds for any x,y € X. Then:

(i) f has a unique fized point x* € X;

(ii) the sequence of successive approrimations x, = f(xn—1), n € N converges to x*
for all xg € X;

(iii) d(zn,2*) < A™(I, — A) "L (d(z0,21)), n € N;
(iv) if g : X — X satisfies the condition d(f(x),g(x)) <X ¢ for all x € X and some

c € R™, then by considering the sequence y, = g" (o), n € N, one has

d(yn, ") 2 (I, — A)_l(c) + A™(I,, — A)_l(d(:vo,xl)), n € N.

Now we recall some results from Banach algebra theory (see, e.g., [2]). We write
B(E) for the set of all bounded linear operators on E and L(FE) for the set of all linear
operators on E. Note that B(E) is a Banach algebra. If A € B(E), then

r(A) = lim | A" || % = inf || A"|7
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is called the spectral radius of A. If r(A) < 1, then the series Zj:g At is absolutely
convergent, consequently, ||[A"|| — 0 as n — +oo. Furthermore, I — A is invertible in
B(E) and

+oo
oAM= (1-A)N
n=0

Moreover, if ||A|| < 1, then 7(A4) < 1 and I — A is invertible and H(I - A)le < 1

1= A]]
as well as r((I — A)7!) < ﬁ(A)’ In addition, we have that (I — A)~! is nondecreasing
with respect to P.

Lemma 2.13 [24]. Let E be a real Banach space and P C E a solid cone. If
A € L(E) is nondecreasing, then A is continuous.

Lemma 2.14 [24]. Let E be a real Banach space and P C E be a solid cone. Let
A € L(E) be such that A(P) C P and r(A) < 1. Then the following properties hold:

(i) if a € P is such that a < A(a), then a = 0;
(ii) r(A™) < 1 for any fized m € N.

Lemma 2.15 [24]. Let E be a real Banach space, P C E a solid cone, A € L(E) a
nondecreasing operator and {u,} C P a c-sequence. Then, A(uy,) is a c-sequence.

Lemma 2.16 [24]. Let (X, d) be a rectangular cone metric space and {u,} a sequence
i X such that

(i) {d(un,unt1)} is a c-sequence;

(ii) wp # Uy whenever n # m;

(iil) w,v & {up : n € N}.

If {u,} converges to both v and v, then u = v.

Remark 2.17 [33]. Let P C E be a cone in E, A: E — E a linear operator with
r(A) <1 and A(P) C P. Then

(a) (I —A/2) e B(E).If B= (I —A/2)"*A/2, then B € B(E), r(B) < r(A) and
1Bl < [lAl];

(b) for any u,v in P, we have

ujA(u;v>:%A@Q+1AwL

then u < B(v).
Proof of (b) From the assumption we have (I — A/2)u < A/2(v), and so u = B(v).
We point out that part (b) is correction of the result Remark 1.16 (b) from [33].
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Let (X,d) be a rectangular cone metric space. Denote by P(X) the family of all
nonempty subsets of X, by P.(X) the family of all nonempty closed subsets of X. A
point z in X is a fixed point of a multivalued mapping T': X — P(X) if z € T'(z). The
set of all fixed points of multivalued mapping 7" is denoted by Fix(T').

3. Common fixed points of multivalued mappings. We start this section with
the following definition of Perov contraction pair.

Definition 3.18. Let 77,7» : X — P.(X) be two multivalued mappings. A pair
(Th,T>) is said to form a Perov contraction pair if there exist a linear bounded operator
A: E — E with ||A]| < 1 and A(P) C P such that for any z,y € X with u, € T;(x),
there exists u, € T;(y) for i, € {1,2} with ¢ # j such that

d(uxyuy) j A(M1($7yaux7uy))7 (31)

holds, where

My prtas) € { o), dov )y, 00T A

Lemma 3.19. Let (X, d) be a complete rectangular cone metric space over a solid
cone P and T,,Ty : X — Py(X). If the pair (Th,T) is a Perov contraction pair then
Fix(T1) # ¢ or Fix(Ts) # ¢ if and only if Fix(Th) = Fix(T2) # ¢.

PROOF. Let z* € Ty (z*). As, the pair (T3, T?) forms a Perov contraction pair, there
exists © € To(x*) we have

d(l'*, SU) = A(M1($*7l'*, SU*, SU)),

where

Mi(a*, 2" a" x) € {d(mtx*),d(m*,x*»d(x,x*» dl”,@’) +d@, )}

a0, i) 22

Now we have three possibilities: if M;(z*, z*, z*, z) = d(z*,z*) = 0, then we have
x* =, if My(z*, 2", 2%, z) = d(z,z*), we have

d(x,x*) = A(d(z, z")),

by the Lemma 2.14 (i), we have z* = x.

If My(a*,z*, 2% 2) = w7 then we obtain that z* = x. Hence z* € T(z*) and
so Fix(T1) C Fix(Ts). Similarly Fix(T2) C Fix(T1) and therefore Fix(T}) = Fix(T2). O

Theorem 3.20. Let (X,d) be a complete rectangular cone metric space over a
solid cone P. If T\, Ty : X — Py(X) forms a Perov contraction pair. Then Fix(Ty) =
Fix(T3) # ¢.

PROOF. Suppose that z( is an arbitrary point of X. If zy € T1(z0) or xo € Ta(xzo),
then by Lemma 3.19, the proof is complete. We now assume that zg ¢ T;(zo) for i €
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{1,2}. Let i,5 € {1,2} with ¢ # j, and x1 € T;(zo). As the pair (T1,T5) is a Perov
contraction pair, there exist xo € T;(z1) such that

d(x17x2) j A(Ml(l'(),l'l,l‘l,l‘g)),

where

d d
M1(£U0,5U171'171'2) < {d(xovxl)ad(xoaxl)vd(xlva)a (xo’xl) > (xth)} -

2
d(l’ml’l) —+ d(l’hxg) }

= {d($0,$1)7d($1,$2), 9

Now, if Mi(xg,z1,21,22) = d(xg,z1), we have d(xzi,z2) <X A(d(xg,x1)). If
M (xo, 21,21, 22) = d(x1,x2) then d(x1, x2) < A(d(x1,x2)), which by Lemma 2.14 (i) im-
plies that &1 = 2, that is, 1 € T;(x1) and hence by the Lemma 3.19, proof is complete.
If
d(xo, 1) + d(x1,22)
2 )

Ml(x()a SU171'175L'2) =

then ) )
d(xy,22) = §A(d($o,$1)) + §A(d($1,$2)),

which by Remark 2.17 (b) gives that d(z1,22) < B(d(xo,x1)).
Let zo € T;(x1), there exist xg € Tj(x2) such that

d(xe,x3) = A(M; (21, 22, T2, 23)),

where

2

d(l’hxg) —+ d(l’27$3) }
5 .

d d .
My (21, 20,22, 23) € {d(th),d(ffl,xz%d(x%fs), (o, 02) © (55275”3)} -

= {d(l’l, $2)7 d(SUQ, xS)a

Now, if Mi(x1,x2,29,23) = d(x1,22), we have d(xz2,z3) <X A(d(x1,x2)). If
M (zo,21,21,22) = d(z2,z3) then d(xzs,x3) = A(d(z2,23)), which by Lemma 2.14 (i)
implies that zo = a3, that is, 22 € Tj(z2) and hence by Lemma 3.19, proof is complete.
If
d(l’l, SUQ) + d(l’27 1’3)
2 )

Ml(x()a SU17£L'17£L'2) -

then ) )
d(z2,23) 2 SA(d(21,22)) + 5 Ald(22, 23)),
which by Remark 2.17 (b) implies that d(xq,z3) = B(d(z1, z2)).
Continuing this way, for e, € Tj(z2n—1), there exist 2,11 € T;(x2,) such that the

following holds:
d(xan, Tant1) = AMi(T2n—1, Ton, Ton, T2n+1)),

where
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M (2n—1,T2n, Ton, Tant1) €

d(xan—1,%on) + d(x2n, Ton
S {d(xzn—hxzn)7d(xzn—hl‘zn),d(332n7962n+1)7 (@201, 2n) G 2 H)} =

2
d _ d
= {d($2n—179€2n)7d($2n7$2n+1)7 ($2n 1,372”)—;— ($2n,$2n+1) }
If My (22n—1,%on, T2n, Tant1) = d(T2n—1, Z2p), then
d(zan, Tont1) = A(d(T2n—1,T2n)).
For Mi(x2n—1,%on, Ton, Tont1) = d(Ton,Tant1), We obtain d(zo,,Tony1) =

A(d(z2n, T2n+1)), which by Lemma 2.14 (i) gives xa, = Z2,+1. Finally, for

d($2n—17 xZn) + d(xZna x2n+1)
2 b

M (x2n—1,T2n, Ton, Tant1) =

we obtain that

A(d(zan—1,x2n) + d(Ton, Tant1)) =
1
2

d(xZny x2n+1) =

N =

1
= —A(d(zan—1,%2m)) + §A(d($2m$2n+1))

and hence by Remark 2.17 (b) we have
d(zan, Tant1) = B(d(xan—1,T2n))-
Similarly, for xon41 € Tj(22n), there exist zon42 € Tj(T2n+1) such that
d(zant1, Tont2) = A(d(Ton, Tant1)) or  d(Xant1, Tont2) = B(d(xon, Tont1))-

Therefore, we obtain a sequence {z,} in X such that for z, € Tj(zn—1), there exist
Zn+1 € Ti(zy,) and it satisfies

d(xp, Tnt1) S A(d(xp—1,2,)) foralln € N or  d(zpn,Tnt1) <X B(d(Tn-1,2r)). (3.2)

First, we prove that x,, # x,, for all n,m € N with n # m. Assume on contrary that
there exist n,p € N such that x,, = x4, with p > 2. Then for z,,41 = ®n1p+1, because
A and B commute it follows from (3.2) that

A Xn, Tpt1) = A Xntp, Tngpr1) X AP BP7PI(d(zy, Tnt1)),

where p; € {0,1,2,...,p}. Which by the Lemma 2.14 gives that d(z,,Zn+1) = 6 and
Xy = Zp41. Hence, z, € T;(zy) for i € {1,2}, a contradiction. Thus z,, # x,, for all
n,m € N with n # m. Therefore

d(Tn, Tpt1) 2 A" B" " (d(20, 1)),
where n; € {0,1,2,...,n}. For &2 € T;(2m—3), there exist ., € Tj(zm—1) such that

d(xm—Zv xm) = A(Ml (xm—37 Tm—1,Tm—2, xm))7
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where

Ml(xmffiv Tm—1,Tm—2, xm) S

S {d(xm—?ﬂ xm—l)a d(xm—& xm—Z)v d(xm—lz xm)7 d(xm—& xm—?) i d(xm_h xm) }

2

If M1(Zm—3,Tm—1,Tm—2,Tm) = d(Tm—3 Tm—1), then we have

d(Tm—2,%m) = A(d(Tm—3,Tm-1)) = A% B™T27% (d (20, 2)), (3.3)
where o; € {1,2,...,m — 2}. If M1(Zm—3,Tm—1,Tm-2,Tm) = d(Tm—3,Tm—2), then we
obtain that

d(m—2, Tm) X A(d(@Xm—3 Tm—2)) < AﬁiBm_Z_B"(d(xo, x1)), (3.4)

where §; € {1,2,...,m —2}. If M1(Zm—3, Tm—1,Tm—2,Tm) = d(Tm—1, Tm), then
d(Tm—2,Tm) 2 A(d(Tm—1,Tm)) 3 AV B™ 7 (d(x9,x1)), (3.5)
where 7; € {1,2,...,m — 2}. Finally, the case

d(xm—37 xm—Z) + d(xm—lz xm)
2

My (xm—37 Tm—1,Tm—2, xm) =

implies that

oo, ay) = A (Aot L Sl o

= 5 (Ald(@m—3, Tm—2) + A(d(@m-1,2m))) 2

DN | =

< S (A B2 A, 1)) + AT B (d(ao, 1)), (36)

where §; € {1,2,...,m — 2} and ; € {1,2,...,m}. Now for m,n € N with m > n, we
consider the following cases.
If m — n is odd, then by the rectangular inequality, we have

d(@n, Tm) 2 A(Xn, Tpt1) + d(@pg1, Tng2) + .o+ d(@m—1,Tm) =
=< [AP»B" P AN Bl gpnpn—pn 4 ... 4
+ AClJr'“C’"*lBm717<17“‘§"'“1AP"B”*p”](d(xo,xl)) =< AP,Lanan(d(xowl)).
where p, € {0,1,...,n}, ¢ € {0,1},i = 1,2,...,m — 1, W = (I + 3,55 A% BF=7r) ¢
B(E), o = Zle Gi- Let ¢ > 6. Choose § > 0 such that ¢ + Ns(0) C P, where Ns(0) =

{x € E: | z|<d}. Also, choose N; € N such that A" B"=P»W (d(xg,z1)) € Ns(#) for
all n > Nj. Thus {z,} is a Cauchy sequence, i.e.,

A(y, T) = AP B P W (d(z0, 1)) < c.
If m — n is even, we consider following four cases.
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Case 1. If M1(@m—3, Tm—1,Tm—2,Tm) = d(Tm—3,Tm—1), then by (3.3), we have
A(Tm—2,Tm) < A% B™ 2% (d(x9, 22)),

where «; € {1,2,...,m — 2}. Also,

A(Tns Tm) 2 d(Tn, Tng1) + oo+ d(Tm—3, Tm—2) + d(Tm—2,Tm) =
< AP B P W (d(o, 21)) + AMB™ 2R (d(o, 12)),

where p; € {1,2,...,m — 2}.
Case 2. If My(zpm—3,Tm—1,Tm—2,Tm) = d(Tm_3,Tm—2), then by (3.4) we obtain
that
(T, Tm) = AN B™ 27X (d(20, 21)),

where A; € {1,2,...,m — 2}, which implies that

d(l’»,” xm) j d(xna anrl) +...+ d(xmf?n xm72) + d(l’m,Q, xm) j
=< AP» B" P W (d(z0, 1)) + AN B™ 27N (d(xg, 21)).
Case 3. If M1(zm—3,Tm—1,Tm—2,Tm) = d(Tm_1,%m), then it follows from (3.5)

that
d(zm—2, Tm) 2 AV B (d(x0, 1)),

where v; € {1,2,...,m — 2}. Which gives

d(l’»,” xm) j d(xna anrl) +...+ d(xmf?n xm72) + d(l’m,Q, xm) j
= Ap"Bn_p"W(d(l'o, 1‘1)) + A BmT (d(l‘o, 1‘1)),

where 7y, € {1,2,...,m — 2}.
Case 4. If
d(xm—By xm—Z) + d(xm—ly xm)

Ml(xmf?nxmflvxmf%xm) = 9 y

then by (3.6) we have
(T2, Tm) = 1/2(A%B™ 2% (d(xg, 1)) + A" B™ " (d(20,x1))),

where §;, € {1,2,...,m —2} and n; € {1,2,...,m}. And

d(l‘n, xm) = d(xru xn-l—l) +...+ d(xm—By xm—Z) + d(xm—% xm) =

< AP B (A0, 0)) + 5 (A% BT (dlwo, ) + AT BT (d(zo, 1))

Thus in all the cases we obtain that {z,} is a Cauchy sequence as n,m — oo. By
completeness of X, there exist an element x* € X such that z,, — x* as n — oo.
Let ¢ > 6 be given. Choose a natural number N such that d(z,,,z*) < ¢ for all
m > N. As {z9, } converges to z* as n — oo, for xa,, € T;(x2,—1) there exist u, € T;(z*)
such that
d(zan, un) = A(M1(z2n—1,2", Tan, Un))
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where
*
Ml(x2n71a T ,ZT2on, un) €

S {d(x2n1ax*)7 d(x2n717x2n)ad(x*aun)a
Note that

d(x2n717 xQn) + d($*7 un)
5 .
d(tn, ") 2 d(un, Ton) + d(x2n, Tant1) + d(T2n41,2") =2

j A(Ml(x2n—17 x*7 T2n, un)) + d(x2n7 x2n+1) + d(x2n+17 x*)
Now, if My (zon—1,2", Topn, un) = d(2p—1,2*), then

d(up,z*) 2 A(d(x2n-1,2")) + d(x2n, Tant+1) + d(T2nt1,2™) K€ A(c) + c+c.
As ¢ > 0 is arbitrary, for m > 1, we have

d(umx*)jA(£)+£+£:@+£+ﬁ—>o
m m m m m m

as m — oo. If My(zon—1,2*,Zon, un) = d(x2n—1, T2y), then from Lemmas 2.15 and 2.16,
we obtain that

d(“ny il'*) j A(d(xanla x2n)) + d(x2n7 x2n+1) + d(x2n+17 il'*) Lc+c+ec
where ¢ > 0 is arbitrary. For m > 1, we have

d(up, ) < + — 4+ %

c
m

Sle

c
— —0
m m

as m — 0o. In case My (x2n—1, 2", Topn, upn) = d(z*, uy,,), we have

d(unv il'*) = A(d(l'*, un)) + d(x2n7 x2n+1) + d(x2n+17 il'*)
which gives

(I = A)(d(un, ")) = d(z2n, Tant+1) + d(T2n11,77) 2 2¢,
where ¢ > 0 is arbitrary. For m > 1

1
N (T -1 (LY < 27 a1
dun,a™) 2 (L= A7 (=) 2 —(I = A7) =0
as m — oo. Finally, if My (zon—1,2%, Zon, un)

_ d(zon—1,2n)+d(x" un)
- 2

, we have

) + d(Zon, Tont1) + d(z2pt1, %) =

1
A(d(wan-1, T20)) + FAMd(@", un)) + d(@2n, T2n+1) + d(@2041,77)
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Therefore,
=2 dum,a®) < Lot et e — d( VRI-a2)T () 50
5 Uun, ") S 5etete Up, T°) = 5 ot

as m — oo. Thus u,, — 2* as n — oco. Since T;(z*) is closed, «* € Fix(T}) = Fix(T;).

Remark 3.21. We notice that the concept of a rectangular cone metric space is
more general than one of the rectangular metric space. The results presented in this
research article generalized some results of Branciari [3] and Ahmad et al. [4]. O

Example 3.1. Let E = R? | P = {(x,y) € R? : 2,y > 0}, and ||z|| = max{|x1]|, |z2|},
where z = (x1,22) € E. Suppose that X = {(z,0) € R? : 2 > 0} U {(0,2) € R? : z > 0}.
Define d: X x X — FE by:

(0,0), if (2,0)=(y,0),
(30,3), if z and y are in {1,2} , z # y,
(0,1), if z and y are not in {1,2} simultaneously, z # y,
(412—ylla—y)) otherwisc

d((l‘, 0)7 (y7 O)) =

(07 0)7 if (Z‘, O) = (y7 0)7
(30,3), if z and y are in {1,2} , z # y,
(0,1), if z and y are not in {1,2} simultaneously, = # v,
(|lz—y |,§ | z —y |), otherwise,

d((0,x),(0,y)) =

and

(30,3), if z and y are in {1,2} , z # vy,
d((z,0),(0,3)) =d((0,y), (z,0)) =< (0,1), if z and y are not both in {1,2}, z # y,
(37 +y,z + 2y), otherwise,

where ¢ > 0 is a constant. Note that (X, d) is a complete rectangular cone metric space.
For

) e too.0onufop.enfufopoph
s{go.0olu{go.qolue.o.

define a mapping 71,7 : X — Py (X) by

= {(071')}7 if :()7
Tl(:v,y){ {(£,0): 2 >0}, ilf"y;éo
and
Ta(z,y) = {(0,2)}, ify =0,
b,y {(£,0): 2 >0}, iy 0.

First, we show that for z,y € X with u, € T1(z), there exists u, € T>(y) such that (3.1)
is satisfied. We consider the following cases.
(i) If x =y = (0,0), then (3.1) is satisfied obviously if we take u, = u, = (0,0).
(ii) For z = (0,3), y = (0,0) and u, = (0,0) € Ty(z), take uy = (0,0) € Ta(y).

496 Becmwux CII6I'Y. Mamemamura. Mexanurxa. Acmponomusn. 2021. T.8 (66). Bun. 3



(iii) When z = (0, 3), y = ((z

)
(iv) In case z = (3,0), y = ,%)ET( ) take uy—(O O)ETQ( )

Note that

o) )3
and d(z,y) = d((%o) 7(0,0)> — (g ;)
Now

O Rlw

= A(d(z,y)),

Wl Nl=
—
o~
Il
—

d(um’ uy) = [

where d(z,uy) € Ml(x y7um7uy).
(v) For x = ( ,0), y = ( ,0) and u, = (07%) € T (x), for u, = (0, i) € Tu(y), we

have
d(ug,uy) =d ((0, %) , (O7 i)) = (37 %)
and
wo-o((39) (62)-G3)
Now
d(um—[]sll—[o OH A

where d(x, uz) € Mi(z,y, ug, uy).
(vi) In case = = (1,0), y = (0,2) and u, = (0,1) € Ti(z), take u, = (0,0) € Ta(y).
Note that
d(uz, uy) = d((0,1),(0,0)) = (0,1), 0> 0

and
d(z,y) = d((1,0),(0,2)) = (3¢,3), 0 > 0.

d(ux,uy)z{ﬂts[%@y:[

where d(z,y) € Mi(z,y, uz, uy).

Now we show that for z,y € X with u, € Ta(x), there exists u, € Ti(y) such that
(3.1) is satisfied. We consider the following cases.

HUz=y= (O 0), then (3.1) is satisfied obviously as u, = u, = (0,0).

(i) For z = (0,3), y = (0,0) and u, = (0,0) € Tx(z), take u, = (0,0) € T3 (y).

(iii

(

Now

O lw

¢ | = At

[
—
w

iii) When z —( 1), y=1(0,1) and u, = (0, O) € Ty(z), take uy = (0,0) € T (y).

iv) In case x = (%,O) y = (0,0) and u, = (0, 3) € Ta(z), take u, = (0,0) € T1(y),

d(umuy)—d((O ;) (0, 0)) <; ;’)
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Now

Okl

W= M=
|—|
—
©olot 0ol
| I
-~
Il
—

d(“zvuy) = l

where d(z,uy) € Ml(x y7um7uy)
(v) For z = (1,0), y = (4,0) and u, = (0,3) € Ta(z), take u, = (0,3) € Ty (y).

Note that ) ) L1
)= ((03)-(05)) = (3:5):
and
wea=o((3)-(4))- )
Also,

O Rlw
olct oI~

<l

where d(z,uz) € Mi(z,y, ug, uy).

oot 0ol

d(“zvuy) = l

[N N =

3
Thus the pair (77.7%) is forms a Perov contraction with operator A = [ 8 g }
3
Indeed A™ — 8 8 and ||A|| < 1. So all the conditions of theorem is satisfied.

Moreover (0,0) is the fixed point of mappings 77 and T%.
Our results extend and unify various comparable results in [24, 33] and [3]. The next
result is a corollary of Theorem 3.20.

Corollary 3.22. Let (X, d) be a complete metric space, and T1, Ty : X — CB (X)
forms a generalized R-mulivalued pair, that is, if for each ©,y € X, u, € T;x, there exists
auy € Ty for each i,j € {1,2} withi # j such that

d(xvuy) +d(y7u$)
)

d (g, uy) < hmax {d<x,y> () d (v, uy).

where 0 < h < 1.
Then Fix(T1) = Fix(T2) # 0. Moreover, Fix(T}) = Fix(T) is closed.
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MHuoro3unauHaga ckumaroiriasi napa Ileposa
B METPMYECKHNX IIPOCTPAHCTBAX NPSIMOYIOJbHOI'O KOHYCa

M. A66ac'?, B. Paxovesuw®, 3. Hyp'

! Tocymapcreenubiit kosuiemk Yuusepcurera Jlaxopa, Jlaxop, 54000, ITaxucran
2 Vuusepcurer IIperopun, IIperopusi, 0002, FOxuas Adpuka
3 Vuumsepcurer Huma, Hum, 18000, Cepbus

st muruposauusi: Abbas M., Rakocevié V., Noor Z. Perov multivalued contraction pair in
rectangular cone metric spaces // Becruuk Cankr-Ilerep6yprekoro yuusepcurera. Maremarnka.
Mexanuka. Acrponomusi. 2021. T. 8 (66). Bour. 3. C. 484-501.

https://doi.org/10.21638 /spbu01.2021.310

IlepoB m3yumn npunnun bamaxoBa c:kaTust B paMKax OOODIIEHHOTO METPHUYECKOr'O IPO-
CTPAHCTBA ¥ MPEICTABUII YCJIOBUE CXKATHS, IPA KOTOPOM CYKUMAIOIIAsl IOCTOsTHHAS 3aMEHsI-
ercsi MaTPUIEl ¢ HEOTPUIATEIbHBIMU BXOJAMU U CIIEKTPAJIbHBIM pajuycoM MeHnee 1. Azam
U Jp. IPEJICTABUIIN IOHSITHE IIPSIMOYOJIBHOIO KOHYCHOI'O METPUYECKOI0 IPOCTPAHCTBA, CJIe-
nyst unee bpanumapu, Xyana n YxkaHa, 3aMEHUB TPEYTrOJIbHOE HEPABEHCTBO B KOHYCHOM
METPUYECKOM IIPOCTPAHCTBE IPIMOYTOJIbHBIM HEpaBeHCTBOM. MorTuBupoBaHHasi paboToit
Ab6baca, Berpo u Pamenosuua meb HacTosmel paboThl COCTOUT B TOM, 9TOOBI BBECTH HO-
BRIl KJIaCC MHOTO3HAYHBIX OTOOparkenuit Tuma [lepoBa m mpeacTtaBuTh 0Ob6IIMit pe3ysibTaT
bUKCHPOBAHHON TOYKU JJIsi TAKUX OTOOPArKEHUI Ha IIOJTHOM METPHYECKOM IIPOCTPAHCTBE
MIPSIMOYTOJIFHOTO KOHyca. B paboTe mpuBeIeH MpuMep, 1eMOHCTPUPY IO CIIPaBe I IMBOCTD
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MOJTy Y€HHBIX PE3y/ILTATOB. Hallu BBIBOIABI PACIITUPSIIOT, OObEAMHSIIOT U 0O0OIIAIOT PA3JIIHY-
HbIEe COIIOCTaBUMbIE Pe3yJIbTaThl B CYIIEeCTBYIOMIEll JuTepaType.

Knarouesvie crosa: HEMOOBUXKHASA TOUKA, KOHUYECKOE METPUYECKOE IIPOCTPAHCTBO, IIPAMO-
YTOJIBHOE METPUYECKOe IIPOCTPAHCTBO.

Crarbs nocrynuina B pemakiuio 27 asrycra 2020 r.;
nocste gopaborku 26 despastsa 2021 r;
pekoMmeH0BaHa B nedaTrh 19 mapra 2021 1.

KourakrHnas uandopmanus:

Ab6bac Modoicaxed — abbas.mujahid@gmail.com
Paxouesuy Baadumup — vrakoc@sbb.rs
Hyp 3axpa — znoor2175Q@Qgmail.com
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