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In this paper, we extend an inequality concerning the polar derivative of a polynomial in
Ly-norm to the class of lacunary polynomials and thereby obtain a bound that depends on
some of the coefficients of the polynomial as well.
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1. Zygmund type inequalities for polynomials. Let f(z) be a real polynomial
of degree at most n then according to a well-known classical result in approximation
theory due to A.Markov [1],

"(z)] < n? :
_max [f/(z)] <n”_max |f(x)]

The above inequality is best possible because for Chebyshev polynomial T, (z) =
cos(narccosx), max_i<z<1 |Tn(z)| = 1 and |T),(£1)| = n? This inequality has been
generalized in several ways, in particular, S. Bernstein (for details see [2] or [3]) obtained

its extension to complex polynomials. Let P,, denote the space of all complex polynomials
n

P(z) = ijo a;z’ of degree at most n. According to Bernstein’s inequality, if P € P,
then
1Pl <nlIPlls, where [P = Il"glfglP(Z)I-

Define the standard Hardy space HP norm for P € P, by

1/p

o
121~ (5 [ IPEP @) o<p<x,

It is well known that the supremum norm of the space H satisfies

1Pl = lim (1P,
The other limiting case, also known as Mahler measure of a polynomial P(z), is

1 2w i
| Pl := exp (%/0 log | P(e 9)| d0> .
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If P € P,, then
1P llp < nll Pllp- (1)

Inequality (1) is due to Zygmund [4]. Zygmund obtained this inequality as an analogue
to Bernstein’s inequality. Arestov [5] showed that the inequality (1) remains valid for
0 < p < 1 as well. Equality in (1) holds for P(z) = az™, a # 0.
For the class of polynomials P € P,, having no zero in |z| < 1, inequality (1) can be
sharpened. In fact, if P € P, and P(z) # 0 for |z| < 1, then
1P, <

_" P, 1. 2
< T 1Pl 72 @)

Inequality (2) was found out by De Bruijn [6]. Rahman and Schmeisser [7] proved
the inequality (2) remains true for 0 < p < 1 as well.

The estimates is sharp and equality in (2) holds for P(z) = az™ + b, |a| = |b] # 0.

Govil and Rahman [8] generalized inequality (2) and proved that if P € P,, does not
vanish in |z| < k where k > 1, then

1P, < IPl,, p=1. 3)

P ||k+ [

As a refinement of inequality (3), it was shown by Rather [9] that if P € P, and
P(z) = Z;’L:O a;jz? #0 for |z| < k,k > 1, then

||P/||p_m||P||pa p>0. (4)
where §; is defined by
1ai|
_ 1.2 _nlaol
0=k 71 Tl 7 & (5)
n |ao|

2. Extension of Zygmund type inequalities to polar derivatives. By Gauss —
Lucas theorem (see [10]), if all the zeros of a polynomial P € P,, of degree n lie in a half
plane then its critical points are also contained therein. Since we may map a half plane

onto a closed disk through a bilinear transformation z = ¢(w) = Zﬁ)’ig, a,b,c,d € C
with ad — be # 0. Let g(w) = (cw + d)"P (Z;‘)’is) be transformation of P(z) under

¢, then if £ is a critical point of g, then ¢(€) is either co or a zero of the polynomial
nP(z) 4+ (£ — z) P'(z). This property guides us to the polynomial

DalP)(2) := nP(2) + (a — 2)P'(2),

called the polar derivative of P with respect to a complex number « (for details see [10,
p.44]). Note that D,[P](2) is of degree at most n — 1 and it generalizes the ordinary
derivative P’(z) of P(z) in the sense that

lim DalP)(z) _ P'(2)

a—ro0o o
uniformly with respect z for |z| < R, R > 0.
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Aziz and Rather [11] extended inequality (2) to the polar derivative of a polynomial
and proved that if P € P, and P(z) does not vanish in |z| < 1, then for a € C with

lof > 1, and p > 1,
la] +1
IWAHhSn<m+d| 121, (©

Aziz et al. [12] also obtained an analogue of inequality (3) to the polar derivative
and proved that if P € P, and P(z) # 0 for |z| < k where k > 1, then for @ € C with

o] > 1 and p > 1,
o +k
|WAﬂm3n<ﬁLd|>nn @

Later N. A. Rather [13, 14] showed that inequalities (6) and (7) remain valid for 0 < p < 1
as well.

Recently, Rather et al. [15] extended (4) to the polar derivative which among other
things also include a refinement of (7) and proved if P € P,, and P(z) does not vanish
in |z| < k where k > 1, then for @ € C with |a] > 1 and 0 < p < o0,

|| + 61
[1DaPll, <n| =77 | 1Pl (8)
o 161 + =, Y
where 4 is given by (5).

Let P, C P, be a class of lacunary type polynomials P(z) = ag + Z;’L:u ajz,
where 1 < p < n.

As a generalization of inequality (8), they [15] also proved that if P € P,, , and P(2)
does not vanish in |z| < k where k > 1, then for a € C with |a| > 1 and 0 < p < oo,

o] + 6,
D,[P]l|.. < — 1 ||P|,,
n [”“—”Gm+4u"m ©)

(g) lau] pu—1 +1

lao|

( ) ‘aulku+1 +1

lao|

where

5# — ku+1

(= K").

3. Main results. Our main result is a compact generalization of all the above results
for the class of polynomials not vanishing in |z| < k, k > 1. Here, we present our main
result:

Theorem. If P € P, , and P(z) does not vanish in |z| < k where k > 1, then for
a€Cwith|la] >1,0<p<ocoand 0 <t <1,
] + 0yt
o (Y P, (10)

|| — 1)
D, |Pl]| + nmt <
[12atp e (215 NPT

where m = min|, - |P(z)| and

lau| k“’_l—‘rl
E )\ao\ tm . (11)

) _laul Jeut1 +1
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For t = 0, (10) reduces to (9). If in above theorem, we let p — oo, we obtain the
following Corollary.

Corollary 3.1. If P € P, ,, and P(z) does not vanish in |z| < k where k > 1, then
fora € C with |a| > 1 and 0 <t <1,

|1 Da[P] {(laf +0u0) 1 Plloc = (Jaf = 1)tm}

n
< _
I < L+ 0y,

where 0,,; is given by (11).

If we divide both sides of inequality (10) by |a| and let |a] — oo, we obtain the
following refinement of inequality (4).

Corollary 3.2. If P € P, ,, and P(z) does not vanish in |z| < k where k > 1, then
for0<p<ocoand0<t <1,

nmt
1+ 0,4

n
<
p ||Z+6,U'1t||p

i1+ 1Pl (12)

where m = min|,|—y |P(z)|. The result is best possible as shown by the polynomial P(z) =
(z“ + ku)n/u.

Inequality (12) also includes a refinement of (3). By taking k =1 and g =1 in (12),
the following improvement of inequality (2), which holds uniforms for 0 < ¢t < 1, follows
immediately.

Corollary 3.3. If P € P,, and P(z) does not vanish in |z| < 1 then for 0 < p < oo
and 0 <t <1,

nmt
2

n
p 11+ 2llp

H|pf|+

1Pl (13)

where m = min|,|—; |P(2)|. The result is sharp and equality in (13) holds for P(z) =
z" + 1.

4. Lemmas. For the proof of above theorem, we need the following lemmas. The
first lemma is due to [16].

Lemma 4.1. If P(z) = ao + Z;,L:“ ajzd, 1 < p < n, is a polynomial of degree n
having no zeros in |z| < k where k > 1, then for 0 <t <1,

0utlP'(2)| < 1Q'(2)| —tmn for [z] =1

and b, > k* > 1 where 6,1 is given by (11), Q(z) = 2" P(1/Z) and m = min; | P(2)|.

Lemma 4.2. If A, B and C are non-negative real numbers such that B + C < A,
then for every real number 3,

(A= C)+eP(B+0O)| < |A+e7B|

The above lemma is due to Aziz and Rather [17] and the next lemma is due to [15].
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Lemma 4.3. If a, b are any two positive real numbers such that a > bc where ¢ > 1,
then for any x > 1,p >0 and 0 < B < 2,

27 27
(a—i—bx)p/ e+ )" dp < (c+x)p/ la+be®|” dp.
0 0

We also need the following lemma due to Aziz and Rather [18].

Lemma 4.4. If P € P, and Q(z) = 2z"P(1/Z), then for every p > 0 and B real,
0<p<2m,

21 27 2
/ / |P'() + Q' ()" dbdp < 2mn? / [P a.
0 0 ’

5. Proof of Theorem. By hypothesis P € P,, does not vanish in |z| < k where
k> 1 and Q(z) = z"P(1/Z), therefore, by Lemma 4.1, we have for |z| =1,

8ut |P'(2)] <1Q'(2)| — tmn = |Q'(2)| — tmn (ﬂ) )

Equivalently,

mnt
1+ 6,

)

s (|P/<z>| n ) < 1) - for || = 1. (14)

Setting A = |Q'(e)|, B = |P'(¢")| and C = mnt
146,

that B4+C < §,.(B+C) < A—C < Asince §,,; > 1. Therefore, by Lemma 4.2 for each
real 3, we get

i mnt i i mnt L ; .
(10 - 5 ) v e (1] + 50 )| < e+ P
I, 122

in Lemma 4.2 and noting by (14)

This implies for each p > 0,

2 2
/ \F(9)+eiBG(a)|”deg/ 1@ ()] + &P ()| db (15)
0 0
where
) t . mnt
F — AN mn _ P/ 0 ) 1
0= Q)] - T2 and 6(0) = 1P|+ e (16

Integrating (15) both sides with respect to § from 0 to 27 and using properties of definite
integrals, we get

27 27 ) 27 27 ) ) )
/ / ‘F(9)+615G(0)|pd9dﬁg/ / Q' ()| + €' P' ()| |” dbdB =
0 0 0 0
27 27 ) ) )
:/ / |P/(€“9)+€ZﬁQ/(610)|pd9dﬂ.
0 0
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By using Lemma 4.4 this implies,

27 27 ) 27 )
/ / |F(0) + ePG(0)|" dbdp < 27mp/ |P(ei)|” do. (17)
0 0 0

Since ¢,,,; > 1, we have

T mnt /(0 mmnt
__m s < . .
Q)| ~ T35 < Q) - 75
: /(10 mnt :
On adding ¢ | |P'(e")] + 535 on both sides, where 0 < ¢ <1, we get
eyt

) t ) mnt
ity _ Mt +t<P,eze N ><
Q" ()] T o, 0t [P’ (") 50, ) <

) t . mnt
< R AN mn t{ 1P 0 .
< 1) - g+ (1P +

This further implies for each p > 0,

2m P
T mnit 1(,i0 mnit
Q ——— 0+t (|P + do <
/o {l (€ )l 1 5u,t ht (| (e )l 1 5u,t>}

< [T v (e 2m )Y

1+ 5u’t 1+ 5u’t

Now for o € C with |a] > 1 and 0 <¢ < 1, we have

i0 o] — Oyt < /(0 1,0 o] =0ue) _
| Do [P](€*)] +nmt< T30, ) S ||| P (e)| 4+ 1Q" (e")| + nmit S o)

) t : mnt
_ P 0 mn 180\ _ .
ol (1P + 755 ) + (1)1 - 755

By integrating both sides with respect to 8 from 0 to 2, for each p > 0, we get

/% |Do[P](e)] + nmt o] = Ot pd& <
0 @ 1 + 6H7t -
2 , t , mnt P
< j=4 0 mn A d6.
< [ {ien (1P 725 ) + (1) -

Multiply both sides by fo% |6,..+ + € |PdS, we obtain

27 ) 27 ) |Oé| -9 . P
/ 16,00 + elﬂ|pdﬁ/ {|DQ[P](8“")| + nmt (4)} do <
0 0

146,

2 D 27
) t : mnt ;
< P'(e - ) ( "(e)] - )} de/ Spate’Pdg.
< [ ol (e 75 ) (0= 5 ) o [ repas
(18)
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Further, since 6,; > 1,1 < p < n, by Lemma 4.3 with a = ‘Q’(ei9)| - %,
s

b=|P'(e")| + lfg”t, ¢ =0, and x = ||, we get for every a € C with |a| > 1,
s

rr 30 mnt T mnt p / o 8
— P Oy PdpB <
{(@enn- 25 ) ol (1) + 25 [T 5.+ eras <

2 ' t . , mnt
< p 100y mn B 1P
<ol na [ (100 - 5 ) e (P T

p

dg.

Again, integrating both sides with respect to 6 from 0 to 27, we obtain

2m p 27
T mnt /(0 mnt / i8
- P de ) Pdp <
/ {(|Q<e ) 1+(SM)+|oa|(| (c >|+1+%)} [ e+ P <

27 27
< (la| + 6H,t)p/ / |F(0) + P G(0)|" dpds
0 0

where F'(f) and G(6) are given by (16). Using this in inequality (18), we get
27 ) 2T ) |a| -9 . p
/ |0, + elﬁ|dﬂ/ {|DQ[P](610)| + nmt (7”’ )} do <
0 0 L+ 0
2 27 )
<(al+3uy [ [ IP®)+ PGPz 19)
o Jo
By using (17) in (19), we obtain for each p > 0 and |a| > 1
27 ) 27 " |a| Y . p
| it elas [ {ipatpien)+ e (15=2e) <
0 0 L+ 0
2m
< (o] + 5H,t)p27mp/ |P(ei0)|pd0.
0

Equivalently,

/p

1 27 ) |C¥|—(St P 1
— D, [P](e* — ke <
(%/O {| 1P(c >|+nmt( . )} de) <

n(laf +9,,t) LI N
S m) %/0 P()|" d8
(% J5™ 10 + €718

1/p

which immediately leads to (15) and this completes the proof of Theorem for p > 0. To
obtain this result for p = 0, we simply make p — 0+. O
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B nacrosimeit pabore MbI pacnpocTpaHsieM HEPABEHCTBO OTHOCHUTETBHO IMOJISPHON MPOM3-
BOJIHOII MHOrO4jIeHa B L,-HOpMe Ha KJIacC JJaKyHapHBIX MHOI'OYUJIEHOB U T€M CaMBbIM IIOJIY-
JaeM OIEHKY, KOTOpasl TaKKe 3aBUCUT OT HEKOTOPBIX KOI(MMOUIMEHTOB MHOTOYJIEHA.

Knrouesvie caosa: L,-HEepaBeHCTBa, MOJIAPHAs IIPOU3BOLHAS, MHOIOYJICHEI.
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