UDC 517.5 Вестник СПбГУ. Математика. Механика. Астрономия. 2021. Т. 8 (66). Вып. 3 MSC 30C10, 26D10, 41A17

L_p -inequalities for the polar derivative of a lacunary-type polynomial

 $N. A. Rather^1, L. Ali^1, S. Gulzar^2$

¹ Department of Mathematics, University of Kashmir, Srinagar, 190006, India

For citation: Rather N. A., Ali L., Gulzar S. L_p -inequalities for the polar derivative of a lacunary-type polynomial. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2021, vol. 8 (66), issue 3, pp. 502–510. https://doi.org/10.21638/spbu01.2021.311

In this paper, we extend an inequality concerning the polar derivative of a polynomial in L_p -norm to the class of lacunary polynomials and thereby obtain a bound that depends on some of the coefficients of the polynomial as well.

Keywords: L_p -inequalities, polar derivative, polynomials.

1. Zygmund type inequalities for polynomials. Let f(x) be a real polynomial of degree at most n then according to a well-known classical result in approximation theory due to A. Markov [1],

$$\max_{-1 \le x \le 1} |f'(x)| \le n^2 \max_{-1 \le x \le 1} |f(x)|.$$

The above inequality is best possible because for Chebyshev polynomial $T_n(x) = \cos(n \arccos x)$, $\max_{-1 \le x \le 1} |T_n(x)| = 1$ and $|T'_n(\pm 1)| = n^2$. This inequality has been generalized in several ways, in particular, S. Bernstein (for details see [2] or [3]) obtained its extension to complex polynomials. Let \mathcal{P}_n denote the space of all complex polynomials $P(z) = \sum_{j=0}^n a_j z^j$ of degree at most n. According to Bernstein's inequality, if $P \in \mathcal{P}_n$ then

$$||P'||_{\infty} \le n ||P||_{\infty}$$
, where $||P||_{\infty} := \max_{|z|=1} |P(z)|$.

Define the standard Hardy space H^p norm for $P \in \mathcal{P}_n$ by

$$||P||_p := \left(\frac{1}{2\pi} \int_0^{2\pi} |P(e^{i\theta})|^p d\theta\right)^{1/p}, \ 0$$

It is well known that the supremum norm of the space H^{∞} satisfies

$$||P||_{\infty} = \lim_{p \to \infty} ||P||_{p}.$$

The other limiting case, also known as Mahler measure of a polynomial P(z), is

$$||P||_0 := \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \log |P(e^{i\theta})| d\theta\right).$$

² Department of Mathematics, Government College for Engineering & Technology, Safapora, Ganderbal, Kashmir, 193504, India

[©] St. Petersburg State University, 2021

$$||P'||_{n} \le n||P||_{n}. \tag{1}$$

Inequality (1) is due to Zygmund [4]. Zygmund obtained this inequality as an analogue to Bernstein's inequality. Arestov [5] showed that the inequality (1) remains valid for $0 as well. Equality in (1) holds for <math>P(z) = \alpha z^n$, $\alpha \neq 0$.

For the class of polynomials $P \in \mathcal{P}_n$ having no zero in |z| < 1, inequality (1) can be sharpened. In fact, if $P \in \mathcal{P}_n$ and $P(z) \neq 0$ for |z| < 1, then

$$||P'||_p \le \frac{n}{||1+z||_p} ||P||_p, \ p \ge 1.$$
 (2)

Inequality (2) was found out by De Bruijn [6]. Rahman and Schmeisser [7] proved the inequality (2) remains true for 0 as well.

The estimates is sharp and equality in (2) holds for $P(z) = az^n + b, |a| = |b| \neq 0$.

Govil and Rahman [8] generalized inequality (2) and proved that if $P \in \mathcal{P}_n$ does not vanish in |z| < k where $k \ge 1$, then

$$||P'||_p \le \frac{n}{||k+z||_p} ||P||_p, \ p \ge 1.$$
 (3)

As a refinement of inequality (3), it was shown by Rather [9] that if $P \in \mathcal{P}_n$ and $P(z) = \sum_{j=0}^n a_j z^j \neq 0$ for $|z| < k, k \ge 1$, then

$$||P'||_p \le \frac{n}{||\delta_1 + z||_p} ||P||_p, \ p > 0.$$
 (4)

where δ_1 is defined by

$$\delta_1 = k^2 \frac{\frac{1}{n} \frac{|a_1|}{|a_0|} + 1}{\frac{1}{n} \frac{|a_1|}{|a_0|} k^2 + 1}.$$
 (5)

2. Extension of Zygmund type inequalities to polar derivatives. By Gauss — Lucas theorem (see [10]), if all the zeros of a polynomial $P \in \mathcal{P}_n$ of degree n lie in a half plane then its critical points are also contained therein. Since we may map a half plane onto a closed disk through a bilinear transformation $z = \phi(w) = \frac{aw+b}{aw+d}$, $a,b,c,d \in \mathbb{C}$ with $ad-bc \neq 0$. Let $g(w) = (cw+d)^n P\left(\frac{aw+b}{cw+d}\right)$ be transformation of P(z) under ϕ , then if ξ is a critical point of g, then $\phi(\xi)$ is either ∞ or a zero of the polynomial $nP(z) + \left(\frac{a}{c} - z\right) P'(z)$. This property guides us to the polynomial

$$D_{\alpha}[P](z) := nP(z) + (\alpha - z)P'(z),$$

called the polar derivative of P with respect to a complex number α (for details see [10, p. 44]). Note that $D_{\alpha}[P](z)$ is of degree at most n-1 and it generalizes the ordinary derivative P'(z) of P(z) in the sense that

$$\lim_{\alpha \to \infty} \frac{D_{\alpha}[P](z)}{\alpha} = P'(z)$$

uniformly with respect z for $|z| \le R, R > 0$.

Aziz and Rather [11] extended inequality (2) to the polar derivative of a polynomial and proved that if $P \in \mathcal{P}_n$ and P(z) does not vanish in |z| < 1, then for $\alpha \in \mathbb{C}$ with $|\alpha| \geq 1$, and $p \geq 1$,

$$||D_{\alpha}[P]||_{p} \le n \left(\frac{|\alpha|+1}{||1+z||_{p}}\right) ||P||_{p}.$$
 (6)

Aziz et al. [12] also obtained an analogue of inequality (3) to the polar derivative and proved that if $P \in \mathcal{P}_n$ and $P(z) \neq 0$ for |z| < k where $k \geq 1$, then for $\alpha \in \mathbb{C}$ with $|\alpha| \geq 1$ and $p \geq 1$,

$$||D_{\alpha}[P]||_{p} \le n \left(\frac{|\alpha| + k}{||k + z||_{p}}\right) ||P||_{p}.$$

$$(7)$$

Later N. A. Rather [13, 14] showed that inequalities (6) and (7) remain valid for 0 as well.

Recently, Rather et al. [15] extended (4) to the polar derivative which among other things also include a refinement of (7) and proved if $P \in \mathcal{P}_n$ and P(z) does not vanish in |z| < k where $k \ge 1$, then for $\alpha \in \mathbb{C}$ with $|\alpha| \ge 1$ and $0 \le p < \infty$,

$$||D_{\alpha}P||_{p} \le n \left(\frac{|\alpha| + \delta_{1}}{||\delta_{1} + z||_{p}}\right) ||P||_{p}, \tag{8}$$

where δ_1 is given by (5).

Let $\mathcal{P}_{n,\mu} \subset \mathcal{P}_n$ be a class of lacunary type polynomials $P(z) = a_0 + \sum_{j=\mu}^n a_j z^j$, where $1 \leq \mu \leq n$.

As a generalization of inequality (8), they [15] also proved that if $P \in \mathcal{P}_{n,\mu}$ and P(z) does not vanish in |z| < k where $k \ge 1$, then for $\alpha \in \mathbb{C}$ with $|\alpha| \ge 1$ and $0 \le p < \infty$,

$$||D_{\alpha}[P]||_{p} \le n \left(\frac{|\alpha| + \delta_{\mu}}{||\delta_{\mu} + z||_{p}} \right) ||P||_{p}, \tag{9}$$

where

$$\delta_{\mu} = k^{\mu+1} \left\{ \frac{\left(\frac{\mu}{n}\right) \frac{|a_{\mu}|}{|a_{0}|} k^{\mu-1} + 1}{\left(\frac{\mu}{n}\right) \frac{|a_{\mu}|}{|a_{0}|} k^{\mu+1} + 1} \right\} \quad (\geq k^{\mu}).$$

3. Main results. Our main result is a compact generalization of all the above results for the class of polynomials not vanishing in $|z| < k, k \ge 1$. Here, we present our main result:

Theorem. If $P \in \mathcal{P}_{n,\mu}$ and P(z) does not vanish in |z| < k where $k \ge 1$, then for $\alpha \in \mathbb{C}$ with $|\alpha| \ge 1$, $0 \le p < \infty$ and $0 \le t \le 1$,

$$\left\| |D_{\alpha}[P]| + nmt \left(\frac{|\alpha| - 1}{1 + \delta_{\mu, t}} \right) \right\|_{p} \le n \left(\frac{|\alpha| + \delta_{\mu, t}}{\|z + \delta_{\mu, t}\|_{p}} \right) \|P\|_{p} \tag{10}$$

where $m = \min_{|z|=k} |P(z)|$ and

$$\delta_{\mu,t} = k^{\mu+1} \left\{ \frac{\left(\frac{\mu}{n}\right) \frac{|a_{\mu}|}{|a_{0}|-tm} k^{\mu-1} + 1}{\left(\frac{\mu}{n}\right) \frac{|a_{\mu}|}{|a_{0}|-tm} k^{\mu+1} + 1} \right\}.$$
(11)

For t = 0, (10) reduces to (9). If in above theorem, we let $p \to \infty$, we obtain the following Corollary.

Corollary 3.1. If $P \in \mathcal{P}_{n,\mu}$ and P(z) does not vanish in |z| < k where $k \ge 1$, then for $\alpha \in \mathbb{C}$ with $|\alpha| \ge 1$ and $0 \le t \le 1$,

$$||D_{\alpha}[P]||_{\infty} \le \frac{n}{1 + \delta_{\mu,t}} \{ (|\alpha| + \delta_{\mu,t}) ||P||_{\infty} - (|\alpha| - 1)tm \}$$

where $\delta_{\mu,t}$ is given by (11).

If we divide both sides of inequality (10) by $|\alpha|$ and let $|\alpha| \to \infty$, we obtain the following refinement of inequality (4).

Corollary 3.2. If $P \in \mathcal{P}_{n,\mu}$ and P(z) does not vanish in |z| < k where $k \ge 1$, then for $0 \le p < \infty$ and $0 \le t \le 1$,

$$\left\| |P'| + \frac{nmt}{1 + \delta_{\mu,t}} \right\|_{p} \le \frac{n}{\|z + \delta_{\mu,t}\|_{p}} \|P\|_{p}$$
 (12)

where $m = \min_{|z|=k} |P(z)|$. The result is best possible as shown by the polynomial $P(z) = (z^{\mu} + k^{\mu})^{n/\mu}$.

Inequality (12) also includes a refinement of (3). By taking k = 1 and $\mu = 1$ in (12), the following improvement of inequality (2), which holds uniforms for $0 \le t \le 1$, follows immediately.

Corollary 3.3. If $P \in \mathcal{P}_n$ and P(z) does not vanish in |z| < 1 then for $0 \le p < \infty$ and $0 \le t \le 1$,

$$\left\| |P'| + \frac{nmt}{2} \right\|_p \le \frac{n}{\|1 + z\|_p} \|P\|_p \tag{13}$$

where $m = \min_{|z|=1} |P(z)|$. The result is sharp and equality in (13) holds for $P(z) = z^n + 1$.

4. Lemmas. For the proof of above theorem, we need the following lemmas. The first lemma is due to [16].

Lemma 4.1. If $P(z) = a_0 + \sum_{j=\mu}^n a_j z^j$, $1 \le \mu \le n$, is a polynomial of degree n having no zeros in |z| < k where $k \ge 1$, then for $0 \le t \le 1$,

$$\delta_{\mu,t}|P'(z)| \le |Q'(z)| - tmn$$
 for $|z| = 1$

and $\delta_{\mu,t} \geq k^{\mu} \geq 1$ where $\delta_{\mu,t}$ is given by (11), $Q(z) = z^n \overline{P(1/\overline{z})}$ and $m = \min_{|z|=k} |P(z)|$.

Lemma 4.2. If A, B and C are non-negative real numbers such that $B + C \leq A$, then for every real number β ,

$$|(A-C) + e^{i\beta}(B+C)| \le |A + e^{i\beta}B|.$$

The above lemma is due to Aziz and Rather [17] and the next lemma is due to [15].

Lemma 4.3. If a, b are any two positive real numbers such that $a \ge bc$ where $c \ge 1$, then for any $x \ge 1, p > 0$ and $0 \le \beta < 2\pi$,

$$(a+bx)^p \int_0^{2\pi} |c+e^{i\beta}|^p d\beta \le (c+x)^p \int_0^{2\pi} |a+be^{i\beta}|^p d\beta.$$

We also need the following lemma due to Aziz and Rather [18].

Lemma 4.4. If $P \in \mathcal{P}_n$ and $Q(z) = z^n \overline{P(1/\overline{z})}$, then for every p > 0 and β real, $0 < \beta < 2\pi$,

$$\int_0^{2\pi} \int_0^{2\pi} \left| P'(e^{i\theta}) + e^{i\beta} Q'(e^{i\theta}) \right|^p d\theta d\beta \le 2\pi n^p \int_0^{2\pi} \left| P(e^{i\theta}) \right|^p d\theta.$$

5. Proof of Theorem. By hypothesis $P \in \mathcal{P}_n$ does not vanish in |z| < k where $k \ge 1$ and $Q(z) = z^n \overline{P(1/\overline{z})}$, therefore, by Lemma 4.1, we have for |z| = 1,

$$\delta_{\mu,t} |P'(z)| \le |Q'(z)| - tmn = |Q'(z)| - tmn \left(\frac{1 + \delta_{\mu,t}}{1 + \delta_{\mu,t}}\right).$$

Equivalently,

$$\delta_{\mu,t} \left(|P'(z)| + \frac{mnt}{1 + \delta_{\mu,t}} \right) \le |Q'(z)| - \frac{mnt}{1 + \delta_{\mu,t}} \quad \text{for} \quad |z| = 1.$$
 (14)

Setting $A = |Q'(e^{i\theta})|$, $B = |P'(e^{i\theta})|$ and $C = \frac{mnt}{1 + \delta_{\mu,t}}$ in Lemma 4.2 and noting by (14) that $B + C \le \delta_{\mu,t}(B + C) \le A - C \le A$ since $\delta_{\mu,t} \ge 1$. Therefore, by Lemma 4.2 for each real β , we get

$$\left| \left(|Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}} \right) + e^{i\beta} \left(|P'(e^{i\theta})| + \frac{mnt}{1 + \delta_{\mu,t}} \right) \right| \le \left| |Q'(e^{i\theta})| + e^{i\beta} |P'(e^{i\theta})| \right|.$$

This implies for each p > 0,

$$\int_0^{2\pi} \left| F(\theta) + e^{i\beta} G(\theta) \right|^p d\theta \le \int_0^{2\pi} \left| |Q'(e^{i\theta})| + e^{i\beta} |P'(e^{i\theta})| \right|^p d\theta \tag{15}$$

where

$$F(\theta) = |Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}} \text{ and } G(\theta) = |P'(e^{i\theta})| + \frac{mnt}{1 + \delta_{\mu,t}}.$$
 (16)

Integrating (15) both sides with respect to β from 0 to 2π and using properties of definite integrals, we get

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \left| F(\theta) + e^{i\beta} G(\theta) \right|^{p} d\theta d\beta \leq \int_{0}^{2\pi} \int_{0}^{2\pi} \left| |Q'(e^{i\theta})| + e^{i\beta} |P'(e^{i\theta})| \right|^{p} d\theta d\beta =$$

$$= \int_{0}^{2\pi} \int_{0}^{2\pi} \left| P'(e^{i\theta}) + e^{i\beta} Q'(e^{i\theta}) \right|^{p} d\theta d\beta.$$

By using Lemma 4.4 this implies,

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \left| F(\theta) + e^{i\beta} G(\theta) \right|^{p} d\theta d\beta \le 2\pi n^{p} \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta. \tag{17}$$

Since $\delta_{\mu,t} \geq 1$, we have

$$|Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}} \delta_{\mu,t} \le |Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}}.$$

On adding $t\left(|P'(e^{i\theta})| + \frac{mnt}{1 + \delta_{\mu,t}}\right)$ on both sides, where $0 \le t \le 1$, we get

$$|Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}} \delta_{\mu,t} + t \left(|P'(e^{i\theta})| + \frac{mnt}{1 + \delta_{\mu,t}} \right) \le$$

$$\le |Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}} + t \left(|P'(e^{i\theta})| + \frac{mnt}{1 + \delta_{\mu,t}} \right).$$

This further implies for each p > 0,

$$\begin{split} \int_0^{2\pi} \left\{ |Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}} \delta_{\mu,t} + t \left(|P'(e^{i\theta})| + \frac{mnt}{1 + \delta_{\mu,t}} \right) \right\}^p d\theta \leq \\ \leq \int_0^{2\pi} \left\{ |Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}} + t \left(|P'(e^{i\theta})| + \frac{mnt}{1 + \delta_{\mu,t}} \right) \right\}^p d\theta. \end{split}$$

Now for $\alpha \in \mathbb{C}$ with $|\alpha| \geq 1$ and $0 \leq t \leq 1$, we have

$$|D_{\alpha}[P](e^{i\theta})| + nmt\left(\frac{|\alpha| - \delta_{\mu,t}}{1 + \delta_{\mu,t}}\right) \le |\alpha||P'(e^{i\theta})| + |Q'(e^{i\theta})| + nmt\left(\frac{|\alpha| - \delta_{\mu,t}}{1 + \delta_{\mu,t}}\right) =$$

$$= |\alpha|\left(|P'(e^{i\theta})| + \frac{mnt}{1 + \delta_{\mu,t}}\right) + \left(|Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}}\right).$$

By integrating both sides with respect to θ from 0 to 2π , for each p > 0, we get

$$\begin{split} \int_0^{2\pi} \left\{ |D_{\alpha}[P](e^{i\theta})| + nmt \left(\frac{|\alpha| - \delta_{\mu,t}}{1 + \delta_{\mu,t}} \right) \right\}^p d\theta \leq \\ & \leq \int_0^{2\pi} \left\{ |\alpha| \left(|P'(e^{i\theta})| + \frac{mnt}{1 + \delta_{\mu,t}} \right) + \left(|Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}} \right) \right\}^p d\theta. \end{split}$$

Multiply both sides by $\int_0^{2\pi} |\delta_{\mu,t} + e^{i\beta}|^p d\beta$, we obtain

$$\int_{0}^{2\pi} |\delta_{\mu,t} + e^{i\beta}|^{p} d\beta \int_{0}^{2\pi} \left\{ |D_{\alpha}[P](e^{i\theta})| + nmt \left(\frac{|\alpha| - \delta_{\mu,t}}{1 + \delta_{\mu,t}} \right) \right\}^{p} d\theta \leq$$

$$\leq \int_{0}^{2\pi} \left\{ |\alpha| \left(|P'(e^{i\theta})| + \frac{mnt}{1 + \delta_{\mu,t}} \right) + \left(|Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}} \right) \right\}^{p} d\theta \times \int_{0}^{2\pi} |\delta_{\mu,t} + e^{i\beta}|^{p} d\beta.$$
(18)

Further, since $\delta_{\mu,t} \geq 1$, $1 \leq \mu \leq n$, by Lemma 4.3 with $a = |Q'(e^{i\theta})| - \frac{mnt}{1+\delta_{\mu,t}}$, $b = |P'(e^{i\theta})| + \frac{mnt}{1+\delta_{\mu,t}}$, $c = \delta_{\mu,t}$ and $x = |\alpha|$, we get for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq 1$,

$$\begin{split} \left\{ \left(|Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}} \right) + |\alpha| \left(|P'(e^{i\theta})| + \frac{mnt}{1 + \delta_{\mu,t}} \right) \right\}^p \int_0^{2\pi} |\delta_{\mu,t} + e^{i\beta}|^p d\beta \leq \\ & \leq (|\alpha| + \delta_{\mu,t})^p \int_0^{2\pi} \left| \left(|Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}} \right) + e^{i\beta} \left(|P'(e^{i\theta})| + \frac{mnt}{1 + \delta_{\mu,t}} \right) \right|^p d\beta. \end{split}$$

Again, integrating both sides with respect to θ from 0 to 2π , we obtain

$$\int_{0}^{2\pi} \left\{ \left(|Q'(e^{i\theta})| - \frac{mnt}{1 + \delta_{\mu,t}} \right) + |\alpha| \left(|P'(e^{i\theta})| + \frac{mnt}{1 + \delta_{\mu,t}} \right) \right\}^{p} d\theta \int_{0}^{2\pi} |\delta_{\mu,t} + e^{i\beta}|^{p} d\beta \leq$$

$$\leq (|\alpha| + \delta_{\mu,t})^{p} \int_{0}^{2\pi} \int_{0}^{2\pi} \left| F(\theta) + e^{i\beta} G(\theta) \right|^{p} d\beta d\theta$$

where $F(\theta)$ and $G(\theta)$ are given by (16). Using this in inequality (18), we get

$$\int_{0}^{2\pi} |\delta_{\mu,t} + e^{i\beta}| d\beta \int_{0}^{2\pi} \left\{ |D_{\alpha}[P](e^{i\theta})| + nmt \left(\frac{|\alpha| - \delta_{\mu,t}}{1 + \delta_{\mu,t}} \right) \right\}^{p} d\theta \leq \\
\leq (|\alpha| + \delta_{\mu,t})^{p} \int_{0}^{2\pi} \int_{0}^{2\pi} |F(\theta) + e^{i\beta} G(\theta)|^{p} d\beta d\theta. \quad (19)$$

By using (17) in (19), we obtain for each p > 0 and $|\alpha| \ge 1$

$$\begin{split} \int_0^{2\pi} |\delta_{\mu,t} + e^{i\beta}| d\beta \int_0^{2\pi} \left\{ |D_{\alpha}[P](e^{i\theta})| + nmt \left(\frac{|\alpha| - \delta_{\mu,t}}{1 + \delta_{\mu,t}} \right) \right\}^p d\theta \leq \\ & \leq (|\alpha| + \delta_{\mu,t})^p 2\pi n^p \int_0^{2\pi} \left| P(e^{i\theta}) \right|^p d\theta. \end{split}$$

Equivalently,

$$\left(\frac{1}{2\pi} \int_{0}^{2\pi} \left\{ |D_{\alpha}[P](e^{i\theta})| + nmt \left(\frac{|\alpha| - \delta_{\mu,t}}{1 + \delta_{\mu,t}}\right) \right\}^{p} d\theta \right)^{1/p} \leq \\
\leq \frac{n(|\alpha| + \delta_{\mu,t})}{\left(\frac{1}{2\pi} \int_{0}^{2\pi} |\delta_{\mu,t} + e^{i\beta}| d\beta \right)^{1/p}} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |P(e^{i\theta})|^{p} d\theta \right)^{1/p}$$

which immediately leads to (15) and this completes the proof of Theorem for p > 0. To obtain this result for p = 0, we simply make $p \to 0+$.

References

- 1. Markov A. Sur une question posee par Mendeleieff. Bull. Acad. Sci. de St. Petersburg 62, 1–24 (1889).
- 2. Milovanović G.V., Mitrinović D.S., Rassias Th. Topics in polynomials: Extremal properties. Inequalityies, Zeros. Singapore, World scientific (1994).
- 3. Schaeffer A. C. Inequalities of A. Markoff and S. N. Bernstein for polynomials and related functions. *Bull. Amer. Math. Soc.* 47, 565–579 (1941).
 - 4. Zygmund A. A remark on conjugate series. Proc. London Math. Soc. 34, 392–400 (1932).
- 5. Arestov V. V. On integral inequalities for trigonometric polynomials and their derivatives. *Math. USSR-Izv.* **18**, 1–17 (1982). http://dx.doi.org/10.1070/IM1982v018n01ABEH001375 [Russ. ed.: Ob integral'nykh neravenstvakh dlia trigonometricheskikh mnogochlenov i ikh proizvodnykh. *Izv. Akad. Nauk SSSR Ser. Mat.* **45**, 3–22 (1981)].
- 6. De Bruijn N. G. Inequalities concerning polynomial in the complex domain. *Nederl. Akad. Wetensch. Proc.* **50**, 1265–1272 (1947).
- 7. Rahman Q.I., Schmeisser G. L_p inequalitites for polynomial. J. Approx. Theory **53**, 26–32 (1988). https://doi.org/10.1016/0021-9045(88)90073-1
- 8. Govil N. K., Rahman Q. I. Functions of exponential type not vanishing in a half-plane and related polynomials. *Trans. Amer. Math. Soc.* **137**, 501–517 (1969). https://doi.org/10.2307/1994818
- 9. Rather N. A. Extremal properties and location of the zeros of polynomials. PhD thesis. University of Kashmir (1998).
 - 10. Marden M. Geometry of polynomials. In: Mathematical surveys, no. 3. Amer. Math. Soc. (1989).
- 11. Aziz A., Rather N. A. On an inequality concerning the polar derivative of a polynomial. *Proc. Indian Acad. Sci. (Math. Sci.)* **117**, 349–357 (2007). https://doi.org/10.1007/s12044-007-0030-0
- 12. Aziz A., Rather N.A., Aliya Q. L_q norm inequalities for the polar derivative of a polynomial. *Math. Ineq. and Appl.* 11, 283–296 (2008).
- 13. Rather N. A. Some integral inequalities for the polar derivative of a polynomial. *Math. Balk.* **22**, 207–216 (2008).
- 14. Rather N. A. L_p inequalitites for the polar derivative of a polynomial. J. Inequal. Pure and Appl. Math. 9 (4), 103 (2008).
- 15. Rather N. A., Iqbal A., Hyun H. G. Integral inequalities for the polar derivative of a polynomial. *Non Linear Funct. Anal. Appl.* **23** (2), 381–393 (2018).
- 16. Gulzar S., Rather N.A. Inequalities concerning the polar derivative of a polynomial. *Bull. Malays. Math.Sci. Soc.* 40, 1691–1700 (2017). https://doi.org/10.1007/s40840-015-0183-4
 - 17. Aziz A., Rather N. A. L_p inequalities for polynomials. Glas. Math. 32, 39–43 (1997).
- 18. Aziz A., Rather N.A. Some Zygmund type L_q inequalities for polynomials. J. Math. Anal. Appl. **289**, 14–29 (2004). https://doi.org/10.1016/S0022-247X(03)00530-4

Received: August 30, 2020 Revised: November 24, 2020 Accepted: March 19, 2021

Authors' information:

 $\label{eq:Nisar-Ahmad-Rather} Nisar\ Ahmad\ Rather-\ Dr.\ Sci.,\ Professor;\ dr.narather@gmail.com\\ Liyaqat\ Ali-\ PhD;\ liyaqat7897@gmail.com\\ Suhail\ Gulzar-\ PhD;\ sgmattoo@gmail.com\\$

L_p -неравенства для полярной производной полинома лакунарного типа

 $H. A. Pamxep^1, Л. Aлu^1, С. Гульзаp^2$

¹ Кашмирский университет, Индия, 190006, Сринагар

² Государственный инженерный и технологический колледж, Индия, 193504, Кашмир, Гандербал, Сафапора

Для цитирования: Rather N. A., Ali L., Gulzar S. L_p -inequalities for the polar derivative of a lacunary-type polynomial // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. 2021. Т. 8 (66). Вып. 3. С. 502–510.

https://doi.org/10.21638/spbu01.2021.311

В настоящей работе мы распространяем неравенство относительно полярной производной многочлена в L_p -норме на класс лакунарных многочленов и тем самым получаем оценку, которая также зависит от некоторых коэффициентов многочлена.

Kлючевые слова: L_p -неравенства, полярная производная, многочлены.

Статья поступила в редакцию 30 августа 2020 г.; после доработки 24 ноября 2020 г.; рекомендована в печать 19 марта 2021 г.

Контактная информация:

 $Pamxep\ Hucap\ Axmad$ — dr.narather@gmail.com $Anu\ Ju\ddot{u}a\kappa am$ — liyaqat7897@gmail.com $\Gamma ynbsap\ Cyxa\ddot{u}n$ — sgmattoo@gmail.com