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Several analytical approaches can be utilized to estimate the elastic properties of polycrys-
talline silicon. In experimental studies, the notion of an macroscopically isotropic aggregate
is introduced while the single crystals obey cubic symmetry. We here give a synopsis on
analytical approaches to predict elastic properties and apply them to estimate effective
parameters of polycrystalline silicon. Here, the predictions are based on the parameters
associated with shear solely. The results are juxtaposed in terms of the approaches applied,
while different measures are introduced for evaluation. In comparison with experimental
findings, the geometric mean implies a reasonable estimation for the elastic properties of
polycrystalline silicon.
Keywords: silicon, cubic single crystals, polycrystalline aggregate, averaging methods, elas-
ticity.

1. Introduction. Silicon has a large impact on todays world economy, aslo known
as Silicon Age. For instance, it is an extremely important material for semiconductor elec-
tronics like photovoltaic cells where polycrystalline aggregates are primarily employed.
For a safe and economic operation with this material, the most accurate prediction of
the elastic properties possible is of interest. The problem of effective elastic parameters is
also a question of material symmetry. The single crystals obey cubic symmetry while for
the aggregate, the isotropy condition is reasonable, what is supported by experimental
studies, e. g. [1]. However, the isotropic bulk properties of polycrystalline materials are
homogenized values of their microconstituents.

Homogenization is commonly referred to as the calculation of the constitutive rela-
tionship between macroscopic field quantities — here stress and strain — as a function of
material structure and material properties at the micro level. So first, effective dynamic
and kinematic quantities have to be defined. In present case, the description can be re-
stricted to linear elasticity where, based on Hill’s theorem [2], the macroscopic strain
energy is defined by the half of the product of volume averages of Cauchy stress ten-
sor and infinitesimal strain tensor. Hence, the volume averages of stress and strain are
considered as effective measures.
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The mathematical description of polycrystalline microstructures is of fundamental
importance for their analysis. On the one hand, the microstructure must be described lo-
cally, and on the other hand, a statistical description must be made based on the local one.
The local description of microstructures is done by the aid of indicator functions. Such
functions have the value 1 where the corresponding material is present, otherwise 0 [3].
For single-phased but polycrystalline materials, an indicator function is assigned to each
crystal orientation [4]. The statistical description of the microstructure is based on the
introduction of mean values of the indicator functions, which correspond to the volume
fractions of the material belonging to the indicator function or the associated crystal ori-
entation. The mean values of the indicator function provide the simplest description of
the microstructure based on volume averages. Due to their simplicity, such approaches are
very popular, cf. [5, 6]. Higher moments of the indicator functions yield correlation func-
tions of the crystal orientations [7]. These correlation functions can be used to describe
fundamental features: The microstructure is statistically homogeneous if the correlation
function is translation invariant and statistically isotropic if the correlation function is
also rotation invariant. Both, homogeneity and isotropy should be basic assumptions of
the effective elastic properties to be determined for polycrystalline silion in present work.

The outline of present paper is as follows. First, we delineate the constitutive rela-
tions for the single crystal and the aggregate in Section 2. For silicon, the consideration
of elastic behaviour at small deformations is sufficient. The consitutive measures of the
symmetry classes used are given in a rational representation. As our aim is to present
approaches to homogenization and since homogenization is a purely mathematical prob-
lem, we exploit the projector representation and use their advantages in mathematical
handling for a compact description which is associated with the clear physical and math-
ematical interpretation. Significant elasticity parameters are visualized.

In Section 3 we give an overview on problem-specific, analytical approaches to predict
effective material properties. We consider a single-phase polycrystalline material whose
crystals are characterised by the crystal orientation and their elastic properties. The
distribution function of crystal orientations satisfies the isotropy condition. In addition
to classical and extended methods for determining bounds, unique estimates as well as
purely empirical approaches, which are often used as standard approximations, are listed
and compared. We refrain from detailed derivations of the respective approaches and
concentrate on application and evaluation on the basis of the present problem. Fully
analytic forms of the different constitutive tensors for the effective material have been
worked out in the respective treatises cited. Thereby, literature is too vast for us to
attempt anything that approximates a complete listing of references. Hence we are content
to cite the major treatises to the respective approaches. However, in what follows we
have brought the original descriptions in a form which is consistent with the notation
used in present treatise. The advantages of such notation associated with the spectral
decomposition of the elasticity tensor becomes obvious.

Section 4 is devoted to the application of the homogenization approaches surveyed.
Effective medium estimates based on a well-known source of the silicon single crystals
parameters are determined. Different measures are introduced to describe the scattering
of the results due to the different approaches. Such an in-depth analysis is motivated
by the quantification of theoretically admissible ranges of the effective behaviour with a
perspective of possible experimental investigations. Finally, the estimates of the differnt
approaches are compared and discussed.

The paper concludes with a summary of the results and the consequent implications.

Вестник СПбГУ. Математика. Механика. Астрономия. 2022. Т. 9 (67). Вып. 3 441



Notation. A direct notation is preferred in present treatise. First-order tensors are
denoted as bold minuscules (e. g. a), second-order tensors as bold majuscules (e. g. A),
and fourth-order tensors as black-board bold majuscules (e. g. A). The dyadic product
and single scalar contractions are denoted like (a⊗ b⊗ c) : (d⊗ e) = (b · d)(c · e)a. The
superscript index � denotes the transpose of a tensor which is defined via a ·B� · c =
c ·B ·a or A :B� :C = C : B :A. The components of a tensor are given with respect
to the orthonormalized bases ei or gi. We make use of Einstein’s summation convention
with implicit summation from 1 to 3 that appear pairwise in a product, e. g., the second-
order identity tensor is given by I = ei ⊗ ei. The fourth-order identity tensor is given
by I = ei ⊗ ej ⊗ ei ⊗ ej . We furthermore need the Transposer T = ei ⊗ ej ⊗ ej ⊗ ei to
build the symmetric part of fourth-order identity tensor 2Isym = I + T. The superscript
index −1 denotes the inverse of a tensor, e. g., A ·A−1 = I holds for second-order
tensors and A : A−1 = Isym for fourth-order tensors. Orthogonal tensor have the property
A−1 = A�. The Rayleigh product is denoted by A �B0 = B. It maps all basis vectors of
B0 simultaneously without changing its components. We also make use of the Frobenius
norm of fourth-order tensors which is induced by the scalar contractions ||A|| = [A : : A]

1/2.

2. Constitutive relations of crystal and aggregate. Pure elastic behavior in
context of small deformations is represented by Hooke’s law1 . This law is given as a linear
mapping of the strains E onto the stresses T :

T = C :E. (1)

Herein C is the fourth-order constitutive tensor, while E and T are second-order tensors
for the linearized strains and the Cauchy stresses. By the aid of the spectral decomposi-
tion [10] we can write C in projector representation [11]:

C =

n∑
α=1

λαPα. (2)

Herein n is the maximum number of eigenvalues. In the general case n = 6 holds [12].
Furthermore, λα > 0 are eigenvalues and Pα are eigenprojectors of C. The inverse of such
a constitutive tensor is determined by the inversion of the eigenvalues:

C−1 =

n∑
α=1

1

λα
Pα. (3)

Silicon crystals obey cubic symmetry. In context of Eq. (3), n = 3 holds. The three
distinct cubic eigenvalues are as follows:

λc1 = C1111 + 2C1122, λc2 = C1111 − C1122, λc3 = 2C2323. (4)

The cubic eigenprojectors [11] are

Pc
1 =

1

3
I ⊗ I , Pc

2 = D− Pc
1 , Pc

3 = Isym − D , (5)

1Hooke’s original statement Ut tensio sic vis [8, p. 1] (from anagram CEIIINOSSSTTUV, cf. [9,
p. 31]) means as the extension, so the force. This implies linearity but was a geometry-dependent version
of what is today known as Hooke’s law.
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while

D =

3∑
i=1

gi ⊗ gi ⊗ gi ⊗ gi = Q � D0 with D0 =

3∑
i=1

ei ⊗ ei ⊗ ei ⊗ ei , (6)

is the anisotropic portion, 2Isym = ei ⊗ ej ⊗ (ei ⊗ ej + ej ⊗ ei) is the identity on sym-
metric second-order tensors, and I = ei⊗ei is the identity on first-order tensors. Herein
we make use of the lattice vectors gi of the single crystal and the fixed sample basis ei.
These base vectors are related via the versor Q ∈ SO(3), i. e. gi = Q · ei.

For an isotropic approximation at aggregate level n = 2 holds [11]. We here make
use of the superscript index ◦ for the description of isotropic parameters. The isotropic
eigenvalues are given as

λ◦1 = 3K and λ◦2 = 2G . (7)

The variables K and G are known as bulk and shear modulus. They are related to the
engineering parameters Young’s modulus Y and Poisson’s ratio ν:

Y =
9KG

3K +G
, ν =

3K − 2G

2(3K +G)
. (8)

The associated isotropic projectors are as follows [11]:

P◦
1 = Pc

1, P◦
2 = Isym − P◦

1. (9)

To demonstrate directional dependencies for mono- and polycrystal, we here make
use of three-dimensional elasticity bodies. Again, the difference in the constitutive mea-
sures introduced in preceding section is shown as follows:

Cc = λc1P
c
1 + λc2P

c
2 + λc3P

c
3, C◦ = λ◦1P

◦
1 + λ◦2P

◦
2. (10)

There are only two characteristic parameters that allow a unique three-dimensional re-
presentation of the directional properties of the elastic behavior. These parameters are
the Young’s modulus Y and the bulk modulus K. Following [11], we can determine these
parameters on the basis of an constitutive tensor C of arbitrary material symmetry in
dependence of a direction d, parametrized in spherical coordinates, cf. [13]:

Y (d) =
[
(d⊗ d) : C−1 : (d⊗ d)

]−1
, (11)

K(d) =
[

3 I : C−1 : (d⊗ d)
]−1

. (12)

For present material, i. e. cubic single crystal and isotropic aggregate, the directional
dependence of both parameters is visualized in Fig. 1.

3. Analytical homogenization of polycrystal properties. The prediction of
elastic properties is a long standing problem. Besides time-consuming computational ho-
mogenization methods, there are analytical methods that have found widespread applica-
tion. We here summarize several analytical approaches appropriate for the determination
of effective isotropic elastic properties of cubic silicon aggregates. These approaches typi-
cally result in bounds and estimates of the polycrystals effective behaviour. In the course
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Fig. 1. Directional dependencies of Young’s and bulk modulus for mono- (top) and polycrystalline
(bottom) silicon.

of the specification of consitutive measures given in Section 2, subsequent description is
based on operations with cubic eigenvalues. Due to the isotropic nature of volumetric
changes, the bulk modulus is not subject to any modification from mono- to polycrystal.
Thus, for all subsequent procedures, λ◦1 = λc1 holds, while λ◦2 is sought, cf. Eq. (10)2.

If we want to determine the elastic properties of the corresponding isotropic ag-
gregate from components of the constitutive tensor of cubic single crystals, we have to
statistically average over the orientation space. The early work on such procedures is due
to Voigt and Reuss. Voigt [5] assumed that all crystals in a polycrystal have a uniform
strain field. This results in a weighted sum of second and third eigenvalue:

λV2 =
2

5
λc2 +

3

5
λc3. (13)
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Reuss [6] assumed that all crystals in a polycrystal obey a uniform stress state. This
results in a weighted sum of the reciprocals of the eigenvalues:

λR2 =
5λc2λ

c
3

2λc3 + 3λc2
. (14)

Aleksandrov and Aizenberg [14] proposed that the natural logarithm of the overall stiff-
ness is equal to the average of the logarithms of the monocrystals stiffness. This results in
an averaging scheme around the condition of the commutation of inverse and averaging
operations:

λA2 = (λc2)
2/5(λc3)

3/5. (15)

This geometric mean has the powerful physical condition that the aggregate mean is
equal to the mean of the inverse property.

The aforementioned eigenvalues are the arithmetic, the harmonic, and the geometric
mean of the effective isotropic aggregate stiffness. The approaches by Voigt and Reuss
constitute upper and lower bounds of the strain energy density [15]. Based on Jensen’s
inequality [16], for the relations to the geometric mean we can also state

λV2 ≥ λA2 ≥ λR2 ,

i. e., the eigenvalues based on the geometric mean are bounded by the those of the arith-
metic and harmonic mean.

Hill [17] proposed two mean values of the bounds suggested by Voigt and Reuss.
These are the arithmetic mean

λH+
2 =

1

2

[
λV2 + λR2

]
, (16)

and the geometric mean

λH−
2 =

[
λV2 λ

R
2

]1/2
. (17)

Both parameters introduced above are purely empirical. Comparing Hill’s proposals with
Voigt and Reuss bounds, we can state

λV2 ≥ λH+
2 ≥ λH−

2 ≥ λR2 .

Hashin and Shtrikman [18] proposed a variational principle to get tighter bounds
compared to Voigt—Reuss bounds. In their approach, they relate quantities that repre-
sent a deviation from a reference solution. This approach is sketched in detailled manner
in [19]. Subsequent eigenvalues result:

λHS+
2 = λc3 + 2

[
5

λc2 − λc3
+

6 (λc1 + 3λc3)

5λc3(λ
c
1 + 2λc3)

]−1

, (18)

λHS−
2 = λc2 + 3

[
5

λc3 − λc2
+

4 (λc1 + 3λc2)

5λc2(λ
c
1 + 2λc2)

]−1

. (19)

Comparing Hashin—Shtrikman bounds to the Voigt—Reuss bounds leads to the follow-
ing relation:

λV2 ≥ λHS+
2 ≥ λHS−

2 ≥ λR2 .
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Huang [20] introduced a perturbation method to determine the effective elasticity
tensor. For the special case of an isotropic orientation distribution, the estimate is deter-
mined as follow [21]:

λHg
2 = λV2 −

12

25

(λc2 − λc3)2(5λc1 + 6λc2 + 9λc3)

(2λc2 + 3λc3)(5λ
c
1 + 4λc2 + 6λc3)

. (20)

Fokin [22] proposed the singular approximation approach which is also based on a
reference solution. This approach has been formulated for aggregates of cubic crystals
by Matthies and Humbert [23]. In the case of an isotropic self-consistent solution, this
approximation reduces as follows:

λSA2 =
2λc2p2 + 3λc3p3

2p2 + 3p3
, (21)

where the parameters pγ are determined as follows:

pγ =

[
1 +

2

5λA2

λ1 + 3λA2
λ1 + 2λA2

(λcγ − λA2 )
]−1

∀ γ = {2, 3}. (22)

Based on aforementioned formulae it is possible to determine datasets of the isotropic
effective aggregate behavior based on the single crystals cubic input data. This leads to
isotropic effective aggregate stiffnesses for the respective homogenization approach:

C� = λ1P
◦
1 + λ�2 P◦

2 ∀ � ∈ {V, R, A, H+, H-, HS+, HS-, Hg, SA}. (23)

4. Results and discussion. We tabulate computed effective values of the elastic
behavior of the silicon aggregate in Table. A visual counterpart can be found in Fig. 2.
These effective outcomes are based on input given by Mason [24], i. e. λc1 = 293.50GPa,
λc2 = 101.80GPa, and λc3 = 159.12GPa. Generally, we can identify the following relations:

• approaches based on Voigt and Reuss lead to outer bounds. All other estimates
are within these extremes;

• Hashin—Shtrikman bounds considerably limit the range of feasible estimates com-
pared to Voigt—Reuss bounds;

• estimates by Hill, Aleksandrov and Aizenberg, Huang, and the singular approxi-
mation approach lie in between the Hashin—Shtrikman bounds;

• Hill’s estimates generate the lowest values within the Hashin—Shtrikman bounds;
• Huang’s estimate generate the highest values within the Hashin—Shtrikman

bounds;
• the estimate proposed by Aleksandrov and Aizenberg is located above Hill’s esti-

mates but below the singular approximation approach.
In addition, effective values discussed here are converted to engineering parameters

which are presented in Fig. 4 of Appendix.
In summary, the first- (Voigt and Reuss) and second-order bounds (Hashin—

Strikman) enclose the effective material behavior of the polycrystal. Thus, subsequent
relations emerge for present input:

λV2 > λHS+
2 > λHg

2 > λSA2 > λA2 > λH+
2 > λH−

2 > λHS−
2 > λR2 .
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Estimates for an macroscopically isotropic silicon aggregate
λ�
α � α = 1 α = 2 mark

[GPa]

V

293.50

136.19
R 129.87
A 133.09
H+ 133.03
H− 132.99
HS+ 133.39
HS− 132.83
Hg 133.32
SA 133.16

Fig. 2. Parameter space of analytically determined isotropic eigenvalues of the effective homoge-
neous medium.

This equivalently leads to the following bounds hierarchy to be understood in the spectral
sense:

CV > CHS+ > CHg > CSA > CA > CH+ > CH− > CHS− > CR.

It is well known that the distance DVR between Voigt and Reuss bounds increases with
Zener’s anisotropy ratio ZR = λc

3/λc
2:

DVR = ‖CV − CR‖ = λc2
6
√
5(ZR− 1)2

5(2ZR+ 3)
. (24)

Since results based on the Hashin—Shtrikman approach present tighter bounds, we ad-
ditionally introduce the distance DHS:

DHS = ‖CHS+ − CHS−‖. (25)

We can thus judge the bandwidth of the aggregate’s elastic behavior. Results are depicted
in Fig. 3 (left-hand side). As was to be expected, an improvement of the distance between
upper and lower bounds in the degree of approximation order is evident. For present
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Fig. 3. Spanwidths of significant bounds and relative deviation of different estimates to the Voigt
bound.

materialDHS ≈ 8.9·10−2DVR results. This indicates that the Hashin—Shtrikman bounds
are tighter by a factor of around 11 compared to Voigt—Reuss bounds, thus significantly
diminish the domain of possible values.

As mentioned in Section 3, CV represents the upper bound of the elastic behav-
ior. In the sequel we will hence normalize the homogenization results to this measure.
More precisely, we reduce this normalization to the second isotropic eigenvalue λV2 . This
restriction is possible since the first eigenvalue is the same for all approaches, cf. Table.

To judge the the scatter of the different estimates, we make use of the shear modulus
ratio:

GR� =
λ�2
λV2

=
G�

GV
∀ � ∈ {V, R, A, H+, H-, HS+, HS-, Hg, SA}. (26)

Clearly, applying this scheme to the first eigenvalue, i. e. determining the bulk modulus
ratio, will result in KR = λ�

1 /λV
1 = K�/KV = 1 for any homogenization approach. When

applying the normalization in Equation (26), all results depend on the isotropic eigenvalue
ratio LR� = λ�

1 /λ�
2 while Zener ratio remains ZR ≈ 1.56 for present material. However,

considering Fig. 3 (right-hand-side), it becomes evident that the effective estimates are
at least 95.36% of the Voigt bound. The Hashin—Shtrikman bounds lie inbetween 97.53
and 97.94% of the upper bound. A comparison between Hashin—Shtrikman, Hill, Huang
and self-consistent estimates shows that the geometric mean (97.72% of the upper bound)
provides an estimate pretty much in the middle of these predictions and very close to the
self-consistent method (97.77% of the upper bound) and Hill’s arithmetic mean (97.67%
of the upper bound).

5. Summary and conclusions. The examination of the elastic properties of poly-
crystalline silicon has been carried out by using analytical estimates. A survey of ap-
proaches has been given being valid for isotropic aggregates of cubic crystals. The devia-
toric portions of the single crystal constitutive tensor is used to form aggregate effective
parameters. The estimates of the analytical approaches are appilied and compared.
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It can be concluded that the scattering of the isotropic elastic properties of poly-
crystalline silicon due to the different approaches applied is comparatively small, at least
within the Hashin—Shtrikman bounds. The reason for this is the comparatively low
degree of ansiotropy of the silicon single crystal, cf. Zener ratio. Furthermore, present
findings also imply that the choice of the geometric mean — a unique estimate for the
effective elasticity tensor — is most consitent since it agrees quite well with the experimen-
tal findings, cf. Table 5 in [19]. Nevertheless, despite the lack of theoretical justification,
Hill’s arithmetic mean remains a useful estimate. However, since this requires the knowl-
edge of the Voigt and Reuss bounds, the effort of computation is higher than directly
determining the geometric mean.

In summary, the exploitation of such analytical approaches is much less time-
consuming than applying finite-element computations and much more cost-efficient than
conducting experiments.

6. Appendix. Extended results. Based on Table, it is also possible to give con-
verted estimates of material parameters. We confine this conversion to Young’s modulus
and Poisson’s ratio, cf. Eqs (7) and (8). The distribution of these parameters based on
different estimates is visualized in Fig. 4.
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Y = 3K (1 − 2ν)

form encoding (homogenization procedure)

Voigt (V)

Reuss (R)

Aleksandrov & Aizenberg (A)

Hill, arithmetic (H+)

Hill, geometric (H–)

Huang (Hg)

singular approximation (SA)

Hashin — Shtrikman, upper (HS+)

Hashin — Shtrikman, lower (HS–)

Fig. 4. Young’s modulus and Poisson’s ratio for different approaches.

All determined values lie on a straight between Voigt and Reuss bound. However, as
given in Eq. (7), bulk and shear modulus are scaled parameters of the eigenvalues only,
hence they are not depicted here.
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Mathematica 30, 175–193 (1906). https://doi.org/10.1007/BF02418571

17. Hill R. The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society.
Section A 65 (5), 349–354 (1952). https://doi.org/10.1088/0370-1298/65/5/307

18. Hashin Z., Shtrikman S. A variational approach to the theory of the elastic be-
haviour of polycrystals. Journal of the Mechanics and Physics of Solids 10 (4), 343–352 (1962).
https://doi.org/10.1016/0022-5096(62)90005-4
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Для оценки упругих свойств поликристаллического кремния можно использовать
несколько аналитических подходов. В экспериментальных исследованиях вводится по-
нятие макроскопически изотропного агрегата, когда монокристаллы подчиняются ку-
бической симметрии. В статье дается краткий обзор аналитических подходов к прогно-
зированию упругих свойств и их применению для оценки эффективных параметров
поликристаллического кремния. Прогнозы основаны исключительно на параметрах,
связанных со сдвигом. Результаты сопоставляются для разных применяемых подхо-
дов, а для оценки вводятся различные меры. При сравнении с экспериментальными
данными среднее геометрическое означает разумную оценку упругих свойств поли-
кристаллического кремния.
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The objective of this paper is to provide a fracture mechanics characterization of mor-
tar nanocomposites reinforced with multiwall carbon nanotubes (MWCNTs). The critical
stress intensity factor, KIc, the strain energy release rate, GIc, the effective crack length,
ac, and the crack tip opening displacement, CTODc are determined using three-point bend
specimens. It was established that reinforcement of mortar with MWCNTs provides excel-
lent improvement in the above fracture mechanics quantities.
Keywords: fracture mechanics, multi-wall carbon nanotubes, stress intensity factor, energy
release rate, crack tip opening displacement, mortar nanocomposites, cementitious materi-
als.

1. Introduction. Defects are of utmost importance in the mechanical and failure
behavior of cementitious materials, like cement pastes, mortars, concrete, etc. These ma-
terials are heterogeneous with complex microstructure and can be modeled at various
scale levels including the nano, micro, meso and macro levels. A simple way of model-
ing cementitious materials is to consider them as a two-phase particulate composite. In
cement pastes the matrix is the hydrated cement gels and the reinforcement is the unhy-
drated cement particles. In mortar the matrix is the cement paste and the reinforcement
is the fine aggregates. In concrete the matrix is the mortar and the reinforcement is the
coarse aggregates.

Failure of cementitious materials is the result of initiation, growth and coalescence
of defects, like pores, cracks, etc. starting from the nano, and progressing to micro, meso
and macro scale levels. For example, in concrete microcracks are usually present, even
before loading, at regions of high material porosity near the interfaces between the coarse
aggregates and the mortar. Cracks may also be present in mortar. When the structure
is subjected to applied loads, temperature difference, etc., both types of cracks start to
increase and new cracks are formed. The interface cracks propagate into the mortar and
are connected with the mortar cracks. When a sufficient number of microcracks coalesce
a macrocrack is formed. The damage zone ahead of a traction free crack referred to as
fracture process zone (FPZ) plays an important role in the analysis of growth of cracks.
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Within the FPZ many failure mechanisms including microcracking, debonding of cement-
matrix interface, crack deviation and branching take place. These mechanisms contribute
to the energy of fracture. Carbon nanotubes (CNTs) with their supreme stiffness, high
strength and aspect ratio are excellent reinforcing candidate materials, offering unprece-
dented improvement in both strength and stiffness [1, 2].

Attempts have been made to stop or delay the growth of cracks at micro and macro
scale levels by reinforcing cementitious materials by fibers at these levels [3]. Microfibers
are defined as fibers with diameters less than 50 µm and macrofibers with diameters
less than 500 µm. Microfibers delay the process by which microcracks develop to form
macrocracks by bridging the cracks and transfering the load, while macrofibers improve
the post peak toughness of the material. Cracks, however, are formed at the nano scale
level. To suppress the initiation and growth of these cracks, the use of nano fibers was
introduced.

The superior mechanical, electrical and chemical properties of carbon nanotubes
(CNTs) make them candidate materials for nano reinforcement. These materials, with
aspect ratio greater than 1000 have Young’s modulus around 1 TPa, tensile strength
of 65–93 GPa, and maximum strain of 10–15%. CNTs form agglomerates or bundles
and adhere together with Van der Vaals forces which makes it particularly difficult to
separate. Early attempts to add CNTs to cementitious materials have failed due to poor
adhesion [4–10].

Konsta—Gdoutos and coworkers [1, 11–13] developed a revolutionary method for
effective dispersion of CNTs in cement pastes, mortars and concrete. The dispersion of
different lengths of multi-wall carbon nanotubes (MWCNs) in water was achieved by
applying ultrasonic energy and using a surfactant. They studied the effects of ultrasonic
energy and surfactant concentration on the dispersion of CMTs and concluded that an
optimum of weight ratio of surfactant to CNTs should exist. They found that small
amounts of effectively dispersed MWCNs (0.025–0.08 wt% of cement) increase the flex-
ural strength of cementitious composites. Furthermore, they studied the effect of carbon
nanofibers (CNFs) and showed that the nanocomposites exhibit superior mechanical and
electromechanical properties. They demonstrated that CNFs and carbon fibers (CFs) can
be used in concrete to successfully create a conductive network for stress/damage detec-
tion. They found that in cement nanocomposites reinforced with MWCNs the modulus of
elasticity increases by 45% with respect to the cement paste material, while the flexural
strength increases by 25% for a reinforcement of 0.08 wt%. Moreover, they established
that longer MWCNTs are more effective than shorter ones.

In the above works the effect of MWCNTs and CNTs on the Young’s modulus,
strength and ductility of cementitious material was studied. However, fracture mechan-
ics characterization of cementitious material requires determination of critical fracture
mechanics quantities including stress intensity factor, KI , critical strain energy release
rate, GI , critical crack mouth opening displacement, CMODc and critical crack length,
ac. Failure by crack propagation can be described when stress intensity factor, strain en-
ergy release rate or crack mouth opening displacement reach their critical values. These
quantities are functions of applied loads and the size and dimensions of the structure,
while their critical values are material properties.

The foundations of the application of fracture mechanics to concrete were laid down
by the pioneering work of Hillerborg [14, 15] who introduced the fictitious crack model of
concrete, in an analogous way to the Dugdale—Barenblatt model of metals. After that,
the development of the field was explosive and the theory appears to be matured for
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applicability to design. Early works on the application of fracture mechanics to concrete
are listed in references [16–27]. Reda et al. [28] used the effective crack model developed
by Karihaloo and Nallathambi [29] to determine the critical energy release rate for high
performance concrete, mortar, fiber reinforced concrete and masonry units. Moukwa et
al. [30] studied the effect of alumino-silicate clays on the critical stress intensity factor
and critical crack tip opening displacement. They concluded that appropriate use of silica
fume and alumino-silicate clays can increase the ductility and strength of cementitious
materials. Das et al. [31] used notched three-point bend specimens to determine the
critical stress intensity factor and critical crack tip opening displacement in mortars in
which the Ordinary Portland Cement (OPC) was replaced by limestone or a combination
of limestone and fly ash/metakaolin. The fracture quantities were determined by using
a two-parameter method and a non-contact digital image correlation. It was obtained
that blends of OPC replacement materials and limestone can lead to enhanced fracture
mechanics properties and ductility. Sarker et al. [32] studied the fracture characteristics
of geopolymer (GPC) and OPC concrete using three-point bend specimens. They found
that the critical stress intensity factor is higher for the GPC than the OPC concrete.
Nikbin et al. [33] studied the fracture characteristics of self-compacting concrete using
notched three-point bend specimens. Stynoski et al. [34] studied the fracture properties of
various Portland cement mixtures containing silica fume, carbon nanotubes and carbon
nanofibers using notched three-point bend specimens and the two-parameter method of
Jenq and Shah [2]. They found an improved fracture mechanics performance of mixtures
containing carbon nanotubes and carbon nanofibers.

It is the objective of the present work to characterize the fracture mechanics behavior
of cementitious materials reinforced with well-dispersed carbon nanotubes. Experiments
were performed on three-point bending precracked specimens of cement pastes with-
out and with MWCNTs reinforcement. The excellent reinforcing capabilities of MWC-
NTs are demonstrated by a significant improvement in critical stress intensity factor
(128.6%), critical strain energy release rate (154.9%), critical crack tip opening dis-
placement (39.7%) and effective crack length (10.3%), resulting in advanced materials
for civil engineering applications.

2. Fracture mechanics of cementitious materials. Fracture mechanics charac-
terization of cementitious materials, like cement pastes, mortars and concretes is impor-
tant for various reasons. First, it is generally accepted that material separation is better
described by energy principles rather than by stress or strain. During fracture, new ma-
terial surfaces are created. The energy required to create new material surfaces during
the fracture process is a fundamental characteristic quantity of the material. Application
of fracture mechanics gives a basis for the understanding of the fracture process. Second,
high strength concrete with compressive strength higher than 100 N/mm2 presents ex-
tremely brittle behavior, and fracture mechanics is well suited for studying its failure.
Third, design of large structures, like dams, nuclear reactors, behave in a rather brittle
manner, and their design will be benefited tremendously by fracture mechanics. Fourth,
characterization of fracture toughness by the area under the stress-strain curve of the
material cannot be used to quantify fracture toughness, since it is size and geometry de-
pendent. Fifth, classical theories of fracture based on stress or strain cannot explain the
size effect, according to which the ultimate stress of geometrically similar structures of
different sizes depends on the size of the structure. The size effect can only be explained
by fracture mechanics.
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Direct application of fracture mechanics to cementitious materials is questionable,
since the values of the critical strain energy release rate are specimen size dependent and,
therefore, they could not be used as a characteristic material property. It was realized
that cementitious materials require a different kind of fracture mechanics than metals. In
both metal and concrete structures, nonlinear zones of small (small scale yielding approx-
imation treated by linear elastic fracture mechanics) or normal sizes (ductile fracture)
develop at the crack tip. However, in ductile/brittle metals the material in the nonlinear
fracture process zone ahead of the crack tip undergoes hardening or perfect plasticity,
whereas in concrete the material undergoes softening damage. In cementitious materials
within the fracture process zone (FPZ) many micro-failure mechanisms including ma-
trix microcracking, debonding of cement-matrix interface, crack deviation and branching
take place. All these mechanisms contribute to the energy of fracture. The size of the
fracture process zone ahead of the stress-free crack depends on the geometry and size of
the structure and the type of material. For cement paste the length of the FPZ is of the
order of a millimeter, for mortar is about 30 mm, for normal concrete of course-grained
rock is up to 500 mm, for dam concrete with extra-large aggregates is about 3 m, for
a grouted soil mass is around 10 m and in a mountain and jointed rock values of 50 m
may be typical. On the other hand the length of the FPZ in a fine-grained silicon ozide
ceramic is of the order of 0.1 mm, and in a silicon wafer of the order of 10–100 nm.

3. Experimental determination of KIc, GIc and CMODc. 3.1. General re-
marks. Direct application of fracture mechanics principles have been used for the exper-
imental determination of the critical fracture toughness of cementitious materials. The
methodology has been similar to the experimental determination of the critical strain en-
ergy release rate, GIc, or stress intensity factor,KIc, in metals. Notched three-point bend
specimens have been most popular. The specimens were loaded to a progressively increas-
ing load and the load versus deflection of crack tip opening displacement response was
recorded. The value of GIc, or KIc, is determined from the peak load or the load at the
intersection with the secant of slope 95% of the initial slope with the load-displacement
curve. The values of GIc, or KIc obtained were dependent on the size of the specimen
and its geometrical configuration. Thus direct application of linear elastic fracture me-
chanics for the characterization of the fracture behavior of cementitious materials is not
successful.

3.2. The Jenq—Shah method. In an effort to provide reliable critical fracture
toughness values of cementitious materials, Jenq and Shah [2] proposed a methodology
based on the compliance of the notched specimen. The basic idea behind the method
is to determine an effective, not the initial, crack length. This effective crack length
takes into consideration the inelastic phenomena that take place in the fracture process
zone ahead of the crack tip. The effective crack length is equal to the actual crack
length plus the length of the fracture process zone. For the application of the method
the relationship between the compliance, defined as the value of the crack tip opening
displacement per unit load, and the crack length for special specimen types (three-point
notched bend specimen) is established. The unloading compliance of the specimen is
determined by unloading the specimen after reaching the peak load. The effective crack
length is calculated from the relationship between the compliance and the crack length
using the unloading compliance. The critical value of strain energy release rate, GIc,
or stress intensity factor, KIc, is calculated from the peak load and the effective crack
length using linear elastic fracture mechanics formulas. It has been established that KIc
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determined in this way is independent of the specimen type and size. Thus, determination
of KIc needs two quantities measured from the test, the unloading compliance and the
peak load. Simultaneously with KIc the modulus of elasticity and the critical value of
the crack tip opening displacement are determined.

The experimental determination of the above quantities is based on the load versus
crack mouth opening displacement (CMOD) curve for a loading-unloading cycle of a
three-point bend specimen (Fig. 1).

Fig. 1. Typical load-CMOD curve from loading and unloading procedure for 28 d mortar
reinforced with well dispersed MWCNTs at an amount of 0.2 wt% of cement.

From the curve the following quantities are measured: the compliances for the loading
and unloading parts and the maximum load.

The modulus of elasticity, E, is calculated by

E =
6Sa0g2(αc)

Cib2t
, (1)

where Ci — the compliance of the loading part of the load-CMOD curve, αc = (a0 +
HO)/(b+HO), a0 is the crack length, S is the span length, b is the specimen depth, t is
the specimen thickness, HO is the length defined in Fig. 2, between the two mark points
on the bottom of the beam, g2(α0) — geometric function defined by

g2(α0) = 0.76− 2.28α0 + 3.87α2
0 − 2.04α3

0 +
0.66

(1− α0)2
. (2)

In a similar way, the modulus of elasticity E is calculated from the compliance of
the unloading part of the load-CMOD curve as

E =
6Sacg2(α0)

Cub2t
, (3)

where Cu is the compliance of the unloading part of the load-CMOD curve, ac is the
effective crack length, αc = (ac +HO)/(b +HO).

The unloading compliance is taken within 95% of the peak load calculated from the
load-CMOD curve. The value of the effective crack length ac is calculated by equating
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Fig. 2. Experimental setup for the TPFM testing.

the values of the modulus of elasticity E defined from Eqs (1) and (3). This results in
the following equation

ac = a0
Cu

Ci

g2(α0)

g2(αc)
. (4)

Equation (4) is solved numerically for the determination of the critical crack length ac.
The critical stress intensity factor is calculated by the equation

KS
IC = 3(Pcr +Wh)

S
√
πacg1(ac/b)

2b2t
, (5)

where Pcr is the peak load, Wh =WhoS/L, Who is the self weight of the beam, and

g1

(ac
b

)
=

1.99− (ac/b)(1− ac/b)[2.15− 3.93(ac/b) + 2.70(ac/b)
2]√

π(1 + 2ac/b)(1− ac/b)3/2
. (6)

The critical crack tip opening displacement is calculated by

CTODc =
6(Pc + 0.5Wh)Sacg2(ac/b)

Eb2t
[(1−β0)2+(1.081−1.149(ac/b))(β0−β2

0)]
1/2, (7)

where β0 = a0/ac, g2(ac/b) is calculated from Eq. (2) with α0 = ac/b.
Based on the values of Ks

Ic and CMODc Jenq and Shah [2] introduced a material
length Q by

Q =

(
E CTODc

Ks
Ic

)2

. (8)

The material length Q can be used to characterize the brittleness of the material.
The smaller the value of Q and more brittle the material is. It was found that values of
Q are in the range of 12.5–50 mm for hardened cement paste, 50–150 for mortar, and
150–350 for concrete.

4. Experimental work. 4.1. Materials and specimens. The material investi-
gated in this work was a cement-based composite with the matrix reinforced by multi-
walled carbon nanotubes (MWCNTs). The nanotube reinforcement was of 10–100 µm
length and 20–40 nm outer diameter. Characteristic properties of MWCNTs and are
shown in Table 1.

Type I ordinary Portland cement (OPC) and standard sand according to EN 196–1
were used for casting the cement paste and mortar specimens. To disperse the MWCNTs
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Table 1. Properties of MWCNTs
Nanotubes Diameter, Length, Surface area, Bulk density, Aspect ratio

nm µm m2/gr gr/cm3

MWCNTs 20–45 ≥ 10 > 200 ≤ 0.18 500

homogeneously in the mixing water, MWCNT suspensions were prepared by adding
the MWCNTs in an aqueous surfactant solution that includes a commercially available
polycarboxylate based surfactant (SFC). The resulting dispersions were sonicated at
room temperature following the method described by Konsta-Gdoutos et al. [11, 12].
A constant surfactant to MWCNTs weight ratio of 4.0 was found to achieve effective
dispersion. Ultrasonic energy is applied to the aqueous samples by a 500 W cup-horn
high intensity ultrasonic processor with a standard probe of a diameter of 13 mm and
temperature controller. The sonicator is operated at amplitude of 50% so as to deliver
constant energy rate of 1900–2100 J/min, at cycles of 20 seconds in order to prevent
overheating of the suspensions.

After completion of the sonication procedure, the MWCNT suspensions were added
into the OPC and sand at a constant water to cement ratio w/c= 0.485 and sand to
cement ratio s/c= 2.75. Mixing of the materials was performed according to procedure
outlined by ASTM 305 using a standard robust mixer capable of operating from 140± 5
to 285± 10 revolutions per minute (r/min). After mixing, one set of the mixture was
cast in 20 × 20 × 80 mm oiled molds. Following demolding, the samples were cured in
lime-saturated water until testing. A 6 mm notch was introduced into the prismatic
20× 20× 80 mm specimens using a water-cooled band saw machine.

The same procedure was used for both cement pastes and mortars. Values of an
estimated number of nanotubes per unit volume of the cementitious matrix are also
included in the Table 2, expressed as MWCNT count.

Table 2. Fiber count of MWCNTs in
the cementitious matrix

Fiber count
M —

M+MWCNTs 0.1 wt% 36.1× 1010

M+MWCNTs 0.2 wt% 72.2× 1010

4.2. Testing procedure. Prismatic notched specimens 20×20×80mm were tested
in three point bending at ages of 3, 7 and 28 days. The test was performed using a 25 kN
MTS servo-hydraulic, closed-loop testing machine. The specimens were tested in a crack
mouth opening displacement (CMOD)-controlled mode. The CMOD was used as the
feedback signal to produce stable crack propagation at the rate of 0.008 mm/min, such
that the peak load is reached in about 5 min. The prismatic specimens were monotonically
loaded up to the maximum load. The applied load is then manually reduced after the
load passed the maximum load and within the 95% of the maximum load.

The two-parameter method [2] was used to obtain the fracture mechanics proper-
ties of the specimens from the experimental results. These properties include the critical
stress intensity factor, KS

Ic, the critical strain energy release rate, G
S
Ic, the critical crack
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tip opening displacement, CTODc, and the critical crack length, ac. For the application
of the method the loading and unloading compliances and the peak load were monitored
during the test. A typical loading-unloading load-CMOD curve of a mortar nanocompos-
ite reinforced with well dispersed MWCNTs at an amount of 0.2 wt% of cement is shown
in Fig. 1. According to the ASTM C348, specimens of strengths deviating by more than
10% of the average strength were discarded. The three-point bend specimen geometry
and experimental setup is shown in Fig. 2.

5. Results and discussions. A series of experiments were performed to determine
fracture mechanics parameters including critical stress intensity factor,KS

Ic, critical strain
energy release rate, GS

Ic, critical crack tip opening displacement CTODc and effective
crack length ac in notched three-point bend specimens. Specimens of neat mortar and
mortar reinforced with MWCNTs at amounts of 0.10 and 0.20 wt% were performed.
Fig. 3 presents the variation of KIc versus time for up to 28 days for neat mortar and
mortar reinforced with MWCNTs at amounts of 0.1 and 0.2 wt% of cement.

Fig. 3. Critical stress intensity factor, KIc, of neat mortar and mortar reinforced with
MWCNTs at amounts of 0.1 and 0.2 wt% of cement versus time for up to 28 days.

The water to cement to sand ratio was w/c/s= 0.485/1/2.75.Note thatKIc increases
with time for all three cases. KIc also increases with the addition to neat mortar of
MWCNTs. However, values of KIc are higher for an addition of 0.1 wt% than an addition
of 0.2 wt% MWCNs. This behavior can be attributed to poor dispersion of MWCNTs
in mortar as their percentage increases. Analogous results for the critical strain energy
release rate, GIc, are shown in Fig. 4.

Results for the critical crack tip opening displacement, CTODc, at 28 days for mor-
tars reinforced with MWCNs at amounts of 0.1 and 0.2 wt% are shown in Fig. 5.

Note that CTODc at 0.1 wt% is higher than at 0.2 wt%. The bars in the figure
indicate the error in the determination of CTODc. Finally, Fig. 6 presents results for the
material length Q of 28 day neat mortar and mortars reinforced with 0.1 and 0.2 wt%
of cement.
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Fig. 4. Strain energy release rate of neat mortar and mortars reinforced with MWCNTs
at amounts of 0.1 and 0.2 wt% of cement up to 28 days of hydration.

Fig. 5. Critical crack tip opening displacement of 28 days neat mortar and mortars
reinforced with 0.1 and 0.2 wt% of cement MWCNTs.

6. Conclusions. A thorough study of the effect of reinforcement of neat mortar
with multiwall carbon nanotubes (MWCNTs) at amounts of 0.1 and 0.2 wt% on the
fracture behavior of the nanocomposite was conducted. Fracture properties measured
include critical stress intensity factor, critical strain energy release rate, critical crack tip
opening displacement and effective crack length. All these quantities were substantially
increased by addition of MWCNTs and CNFs. Previous results [11–13] have demonstrated
the beneficial effect of enhancement of tensile strength and Young’s modulus of cement
pastes, mortars and concrete reinforced with small amounts of MWCNTs and CNFs.
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Fig. 6. Material length Q of 28 day neat mortar and mortars reinforced with 0.1 and
0.2 wt% of cement.

The main results of the present study referring to reinforcing capabilities of MWCNTs
and CNFs at amounts of 0.1 and 0.2 wt% on the fracture properties of mortars may be
summarized as:

(i) the critical stress intensity factor increases by an amount of 128.6%;
(ii) the critical strain energy release rate increases by an amount of 154.9%;
(iii) the critical crack tip opening displacement increases by an amount of 39.7%;
(iv) the effective crack length increases by an amount of 10.3%;
(v) reinforcement of mortars by adding MWCNs at amount of 0.1% is more effective

than adding MWCNs at amount of 0.2%. This behavior can be attributed to the poor
dispersion of MWCNs at higher concentrations.

This paper is dedicated to Professor Nikita Fedorovich Morozov on the occasion of
his 90th birthdate. We wish our friend Nikita many more blessed years with good health,
happiness and productivity.
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Механика разрушения полученных по растворной технологии
нанокомпозитов, армированных углеродными нанотрубками

Э. Гдутос1, М.Конста-Гдутос2
1 Афинская академия наук, Греция, 106 79, Афины, ул. Панепистимиу, 28
2 Техасский университет в Арлингтоне,
Соединенные Штаты Америки, 76019, Арлингтон, Teхас, С.Неддерман Драйв, 701

Для цитирования: Gdoutos E., Konsta-Gdoutos M. Fracture mechanics characterization of
mortar nanocomposites reinforced with carbon nanotubes // Вестник Санкт-Петербургско-
го университета. Математика. Механика. Астрономия. 2022. Т. 9 (67). Вып. 3. С. 452–463.
https://doi.org/10.21638/spbu01.2022.306

Целью данной статьи является исследование характеристик механики разрушения на-
нокомпозитов, изготовленных по растворной технологии, армированных многостен-
ными углеродными нанотрубками (MWCNTs). Коэффициент интенсивности критиче-
ского напряжения KIc, скорость выделения энергии деформации GIc, эффективная
длина трещины ac и смещение раскрытия вершины трещины CTODc определяются
с использованием образцов с трехточечным изгибом. Было установлено, что арми-
рование раствора MWCNTs обеспечивает существенное улучшение вышеуказанных
характеристик механики разрушения.
Ключевые слова: механика разрушения, многостенные углеродные нанотрубки, коэф-
фициент интенсивности напряжений, скорость выделения энергии, смещение вершины
трещины, нанокомпозиты строительных растворов, цементирующие материалы.
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