УДК 517.1 Вестник СПбГУ. Математика. Механика. Астрономия. 2024. Т. 11 (69). Вып. 1 MSC 47H10, 54H25

Замечания и обобщение теоремы Хегедюща—Силагьи о неподвижной точке

HO. $Tyanь^1$, H. $Anь-Mymaeaкunь^2$

Для цитирования: *Туаль Ю.*, *Аль-Мутавакиль Д.* Замечания и обобщение теоремы Хегедюша — Силагьи о неподвижной точке // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. 2024. Т. 11 (69). Вып. 1. С. 152–160. https://doi.org/10.21638/spbu01.2024.110

Получено новое обобщение так называемой теоремы Хегедюша — Силагьи (Hegedüs — Szilágyi) о неподвижной точке путем введения нового сжимающего условия в рамках полных метрических пространств. В качестве приложения доказана новая теорема о неподвижной точке, обобщающая и улучшающая многие известные в литературе результаты.

Ключевые слова: теорема Хегедюша—Силагьи о неподвижной точке, полные метрические пространства, новый вид сжимающих условий, сжатие Меира—Килера, орбита.

1. Введение. Знаменитый принцип сжатия Банаха (ВСР: $d(Tx,Ty) \leqslant kd(x,y)$, $k \in [0,1)$) является одним из наиболее полезных результатов нелинейного анализа. На протяжении многих лет многие авторы успешно пытались обобщить эту великую теорему. Как обобщение ВСР, в 1962 г. Эдельштейн [1] доказал существование фиксированной точки для сжимающих отображений (d(Tx,Ty) < d(x,y), где $x \neq y)$ в предположении компактности пространства. В том же направлении и с использованием некоторых вспомогательных функций в 1980 г. Хегедюш и Силагьи [2] доказали следующий результат о неподвижной точке.

Теорема 1. Пусть (X,d)- полное метрическое пространство, и пусть T- такое отображение на X, что $D_T(x)=\sup\{d(u,v):u,v\in\{x,Tx,T^2x,\ldots\}\}<\infty$ для всех $x\in X$. Предположим, что существует функция φ из $[0,\infty)$, удовлетворяющая следующим условиям:

- (i) $\varphi(t) < t$ выполняется для всех $t \in (0, \infty)$;
- $(ii) \varphi$ полунепрерывна сверху;
- (iii) для любых $x, y \in X$

$$d(Tx, Ty) \leqslant \varphi \circ D_T(x, y),$$

 $ede \ D_T(x,y) = \sup\{d(u,v) : u,v \in \{x,Tx,T^2x,\dots,y,Ty,T^2y,\dots\}\}.$

Тогда T имеет единственную неподвижную точку z. Более того, $\{T^nx\}$ сходится κ z для любого $x \in X$.

Из-за важности сжимающих отображений и их приложений во многих работах рассматривались такого рода отображения. В этом направлении авторы в [3]

¹ Университет Сиди Моаме Бен Абдаллах, Марокко, 30050, Фес

² Университет Шуайба Дуккали, Марокко, Эль-Джадида

[©] Санкт-Петербургский государственный университет, 2024

доказали существование некоторой теоремы о неподвижной точке для класса сжимающих отображений без использования компактности метрического пространства. Этот принцип распространен на случай многозначных отображений с помощью хаусдорфова расстояния H, порожденного расстоянием d (см. [4]). Другое обобщение сделано для случая обобщенных ортогональных множеств. Идея здесь заключалась в том, чтобы предположить сжатие только для класса элементов, называемых общими ортогональными элементами (более подробно см. [5–7]). В статье [8] рассматривается обобщение результатов, обсуждаемых в [3], с использованием известной теоремы Райха о неподвижной точке в контексте общих топологических пространств с τ -расстоянием p, упомянутым в [9]. Помимо этих работ, авторы в [10, 11] распространили эту идею на пару отображений и доказали существование общей неподвижной точки. Этот подход использовался для обеспечения существования решения системы дифференциальных уравнений. Можно добавить, что в [12] авторы доказали, что упомянутые результаты можно обобщить на случай нерасширяющих отображений (см. [13, 14]). Отметим, что доказанные теоремы в [12] сделаны без использования компактности пространства и равномерной выпуклости (см. [15]).

Совсем недавно Судзуки [16] обобщил теорему 1 для нового типа сжатия следующим образом.

Теорема 2. Пусть (X,d) — полное метрическое пространство, и пусть T — такое отображение на X, что $D_T(x) < \infty$ для всех $x \in X$. Предположим, что существует функция φ из $[0,\infty)$ такая, что:

- (i) $\varphi(t) < t$ выполняется для всех $t \in (0, \infty)$;
- (ii) для любого $\varepsilon>0$ существует $\delta>0$ такое, что для любого $t\in(0,\infty)$

$$\varepsilon < t < \varepsilon + \delta$$
 влечет $\varphi(t) \leqslant \varepsilon$;

(iii) $d(Tx, Ty) \leqslant \varphi \circ D_T(x, y)$ выполняется для всех $x, y \in X$.

Тогда T имеет единственную неподвижную точку z. Более того, $\{T^n x\}$ сходится κz для любого $x \in X$.

Вышеприведенное сжатие называется сжатием нового типа (HT). В [16] показано, что сжатия HT и Меира — Килера (M-K) [17] независимы.

С другой стороны, несмотря на то что $\max\{D_T(x), D_T(y)\} \leqslant D_T(x,y)$ для всех $x,y \in X$, условие $\max\{\varphi(D_T(x)), \varphi(D_T(y))\} \leqslant \varphi(D_T(x,y))$, вообще говоря, не выполняется, так как монотонность функции φ произвольна.

Мотивируясь этим фактом, мы вводим новое следующее сжатие:

$$d(Tx, Ty) \leq \max\{\varphi(D_T(x)), \varphi(D_T(x, y)), \varphi(D_T(y))\}, \tag{1}$$

для всех $x, y \in X$. Это сжатие более общее, чем с условиями (iii) теоремы 2. Ниже мы доказываем новую теорему о неподвижной точке.

2. Основные результаты. В этом разделе мы начнем со следующих примеров, подтверждающих мотивацию этой статьи.

 $\Pi puмер$. Пусть X=[0,2] снабжен метрикой, определяемой следующим образом:

$$d(x,y) = \begin{cases} \max\{x,y\}, & \text{если} \quad x \neq y, \\ 0, & \text{если} \quad x = y. \end{cases}$$
 (2)

Определим T как отображение на X с помощью

$$Tx = \begin{cases} \frac{1}{2x}, & \text{если} \quad x \in [1, 2], \\ 0 & \text{в противном случае.} \end{cases}$$

Пусть φ — функция из $[0,\infty)$, определяемая равенством

$$\varphi(t) = \begin{cases} \frac{1}{2t}, & \text{если} \quad t \in [1,2], \\ 0 & \text{в противном случае.} \end{cases}$$

Ясно, что φ удовлетворяет условию (i) теоремы 2. Теперь для выполнения условия (ii) пусть $\varepsilon > 0$, так что имеем два следующих случая.

Случай 1. Если $0<\varepsilon<1,$ то существует $\delta=\frac{1-\varepsilon}{2}$ такое, что для любого $t\in(0,\infty)$

$$\varepsilon < t < \varepsilon + \delta$$
 влечет $\varphi(t) = 0 \leqslant \varepsilon$.

Случай 2. Если $\varepsilon \geqslant 1$, то существует $\delta = \varepsilon$ такое, что для любого $t \in (0, \infty)$

$$arepsilon < t < arepsilon + \delta$$
 влечет $arphi(t) = rac{1}{2t} < rac{1}{2arepsilon} \leqslant arepsilon.$

Более того, T удовлетворяет (1). Действительно, пусть $x, y \in X$, тогда мы имеем

$$d(Tx, Ty) \leqslant \max\left\{\frac{1}{2x}, \frac{1}{2y}\right\} = \max\{\varphi \circ D_T(x), \varphi \circ D_T(x, y), \varphi \circ D_T(y)\}.$$

С другой стороны, заметим, что 0 является единственной неподвижной точкой T на X, но T не удовлетворяет условию (iii) теоремы 2. Действительно, пусть $x,y\in X$, и без ограничения общности считаем, что x< y. Если $x,y\in [1,2]$, то получаем

$$d(Tx, Ty) = \frac{1}{2x} > \frac{1}{2y} = \varphi \circ D_T(x, y).$$

 Π ример. Пусть X=[0,2]. Определим расстояние d от $X\times X$ до $[0,\infty)$ с помощью (2). Определим отображение T на X следующим образом:

$$Tx = \begin{cases} e^{-x}, & \text{если} \quad x \in [1, 2], \\ 0 & \text{в противном случае.} \end{cases}$$

Пусть φ — функция из $[0,\infty)$, определяется равенством

$$\varphi(t) = \begin{cases} e^{-t}, & \text{если} \quad t \in [1, 2], \\ 0 & \text{в противном случае.} \end{cases}$$

Очевидно, что φ удовлетворяет условию (i) теоремы 2. Теперь для выполнения условия (ii) пусть $\varepsilon > 0$, так что имеются два следующих случая.

Случай 3. Если $0<\varepsilon<1,$ то существует $\delta=\frac{1-\varepsilon}{2}$ такое, что для любого $t\in(0,\infty)$

$$\varepsilon < t < \varepsilon + \delta$$
 влечет $\varphi(t) = 0 \leqslant \varepsilon$.

Случай 4. Если $\varepsilon \geqslant 1$, то существует $\delta = \varepsilon$ такое, что для любого $t \in (0, \infty)$

$$\varepsilon < t < \varepsilon + \delta$$
 влечет $\varphi(t) = e^{-t} < e^{-\varepsilon} \leqslant \varepsilon$.

Более того, T удовлетворяет (1). Действительно, пусть $x,y\in X$, тогда мы имеем

$$d(Tx, Ty) \leqslant \max \left\{ e^{-x}, e^{-y} \right\} = \max \{ \varphi \circ D_T(x), \varphi \circ D_T(x, y), \varphi \circ D_T(y) \},$$

и 0 — единственная неподвижная точка T на X, но T не удовлетворяет условию (iii) теоремы 2. Действительно, пусть $x,y\in X$. Без ограничения общности считаем, что x< y. Если $x,y\in [1,2]$, то

$$d(Tx, Ty) = e^{-x} > e^{-y} = \varphi \circ D_T(x, y).$$

Замечание 1. Из приведенных выше примеров видно, что T имеет единственную неподвижную точку, но условие (iii) теоремы 2 не выполняется. С другой стороны, мы видим, что T удовлетворяет (1), что обобщает и улучшает теорему 2.

Теперь сформулируем наш основной результат.

Теорема 3. Пусть (X,d) — полное метрическое пространство и пусть T — такое отображение на X, что $D_T(x) < \infty$ для всех $x \in X$. Предположим, что существует функция φ из $[0,\infty)$, удовлетворяющая следующим условиям:

- (i) $\varphi(t) < t$ выполняется для всех $t \in (0, \infty)$;
- (ii) для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любого $t \in (0, \infty)$

$$\varepsilon < t < \varepsilon + \delta$$
 between $\varphi(t) \leqslant \varepsilon$;

(iii) $d(Tx,Ty) \leqslant \max\{\varphi \circ D_T(x), \varphi \circ D_T(x,y), \varphi \circ D_T(y)\}$ выполняется для всех $x,y \in X$.

Тогда T имеет единственную неподвижную точку z. Более того, $\{T^nx\}$ сходится κ z для любого $x \in X$.

ДОКАЗАТЕЛЬСТВО. Доказательство разделено на три основных этапа.

- **Шаг 1.** Докажем, что $\lim_{n\to\infty} D_T(T^nx) = 0$ для всех $x\in X$. Пусть $x\in X$, так как $\{T^nx,T^{n+1}x,\ldots\}\supset \{T^{n+1}x,T^{n+2}x,\ldots\}$, для всех $n\in \mathbb{N}$, тогда $\{D_T(T^nx)\}$ убывает. Следовательно, $\{D_T(T^nx)\}$ сходится к некоторому $\varepsilon\geqslant 0$. Предположим, что $\varepsilon>0$. Имеются следующие два случая:
 - $\varepsilon < D_T(T^n x)$ для любого $n \in \mathbb{N}$;
 - $\varepsilon = D_T(T^n x)$ для некоторого $n \in \mathbb{N}$.

В первом случае мы выбираем $\delta \in (0, \infty)$ так, чтобы

$$\varepsilon < t < \varepsilon + \delta$$
 влечет $\varphi(t) \leqslant \varepsilon$.

Мы выбираем $n_0 \in \mathbb{N}$ так, чтобы

$$D_T(T^{n_0}x) < \varepsilon + \delta.$$

Пусть $m \geqslant n_0$ и $n \geqslant n_0$, поэтому

$$\varepsilon < D_T(T^{\max\{m,n\}}x) \leqslant D_T(T^mx, T^nx) \leqslant D_T(T^{\min\{m,n\}}x) \leqslant D_T(T^{n_0}x) < \varepsilon + \delta$$

$$d(T^{m+1}x, T^{n+1}x) \leqslant \max\{\varphi \circ D_T(T^mx), \varphi \circ D_T(T^mx, T^nx), \varphi \circ D_T(T^nx)\} \leqslant \varepsilon,$$

откуда следует $\varepsilon < D_T(T^{n_0+1}x) \leqslant \varepsilon$, что приводит к противоречию.

Во втором случае мы выбираем $n_0 \in \mathbb{N}$ так, чтобы

$$\varepsilon = D_T(T^{n_0}x).$$

Пусть $m \geqslant n_0$ и $n \geqslant n_0$, поэтому

$$\varepsilon \leqslant D_T(T^{\max\{m,n\}}x) \leqslant D_T(T^mx, T^nx) \leqslant D_T(T^{\min\{m,n\}}x) \leqslant D_T(T^{n_0}x) = \varepsilon$$

И

$$d(T^{m+1}x, T^{n+1}x) \leqslant \max\{\varphi \circ D_T(T^mx), \varphi \circ D_T(T^mx, T^nx), \varphi \circ D_T(T^nx)\} \leqslant \varphi(\varepsilon) < \varepsilon,$$

откуда следует $\varepsilon \leqslant D_T(T^{n_0+1}x) < \varepsilon$, что является противоречием. Следовательно, справедливо $\lim_{n\to\infty}D_T(T^nx)=0.$ Шаг 2. Покажем, что $\lim_{n\to\infty}D_T(T^nx,T^ny)=0$ для всех $x,y\in X.$

Пусть $x, y \in X$, так как

$$\{T^n x, T^{n+1} x, \dots, T^n y, T^{n+1} y, \dots\} \supset \{T^{n+1}, T^{n+2} x, \dots, T^{n+1} y, T^{n+2} y, \dots\}$$

для $n \in \mathbb{N}$, то $\{D_T(T^nx)\}$ убывает. Следовательно, $\{D_T(T^nx)\}$ сходится к некоторому $\varepsilon \geqslant 0$. Предположим, что $\varepsilon > 0$. У нас есть следующие два случаи:

- $\varepsilon < D_T(T^n x, T^n y)$ для любого $n \in \mathbb{N}$;
- $\varepsilon = D_T(T^n x, T^n y)$ для некоторого $n \in \mathbb{N}$.

В первом случае мы выбираем $\delta \in (0, \infty)$ так, чтобы

$$\varepsilon < t < \varepsilon + \delta$$
 влечет $\varphi(t) \leqslant \varepsilon$.

Мы выбираем $n_0 \in \mathbb{N}$ так, чтобы

$$D_T(T^{n_0}x, T^{n_0}y) < \varepsilon + \delta.$$

Без ограничения общности, согласно шагу 1, можно считать

$$D_T(T^{n_0}x) \leqslant \varepsilon$$
 и $D_T(T^{n_0}y) \leqslant \varepsilon$.

Пусть $m \geqslant n_0$ и $n \geqslant n_0$, поэтому

$$\varepsilon < D_T(T^{\max\{m,n\}}x, T^{\max\{m,n\}}y) \leqslant D_T(T^mx, T^ny) \leqslant$$
$$\leqslant D_T(T^{\min\{m,n\}}x, T^{\min\{m,n\}}y) \leqslant D_T(T^{n_0}x, T^{n_0}y) < \varepsilon + \delta$$

И

$$d(T^{m+1}x, T^{n+1}y) \leqslant \max\{\varphi \circ D_T(T^m x), \varphi \circ D_T(T^m x, T^n x), \varphi \circ D_T(T^n y)\} \leqslant \\ \leqslant \max\{D_T(T^m x), \varphi \circ D_T(T^m x, T^n y), D_T(T^n y)\} \leqslant \varepsilon,$$

откуда следует, что $\varepsilon < D_T(T^{n_0+1}x,T^{n_0+1}y) \leqslant \varepsilon$, это приводит к противоречию.

Во втором случае мы выбираем $n_0 \in \mathbb{N}$ так, чтобы

$$\varepsilon = D_T(T^{n_0}x, T^{n_0}y).$$

Пусть $m \geqslant n_0$ и $n \geqslant n_0$, поэтому

$$\varepsilon \leqslant D_T(T^{\max\{m,n\}}x, T^{\max\{m,n\}}y) \leqslant D_T(T^mx, T^ny) \leqslant$$

$$\leqslant D_T(T^{\min\{m,n\}}x, T^{\min\{m,n\}}y) \leqslant D_T(T^{n_0}x, T^{n_0}y) = \varepsilon.$$

Без ограничения общности, согласно шагу 1, можно считать

$$D_T(T^{n_0}x) \leqslant \varphi(\varepsilon)$$
 и $D_T(T^{n_0}y) \leqslant \varphi(\varepsilon)$.

Далее,

$$d(T^{m+1}x, T^{n+1}y) \leqslant \max\{\varphi \circ D_T(T^mx), \varphi \circ D_T(T^mx, T^nx), \varphi \circ D_T(T^ny)\} \leqslant \\ \leqslant \max\{D_T(T^mx), \varphi \circ D_T(T^mx, T^ny), D_T(T^ny)\} \leqslant \varphi(\varepsilon) < \varepsilon,$$

откуда следует, что $\varepsilon\leqslant D_T(T^{n_0+1}x,T^{n_0+1}y)<\varepsilon$, это приводит к противоречию. Следовательно, имеем $\lim_{n\to\infty}D_T(T^nx,T^ny)=0$.

Шаг 3. На этом шаге мы доказываем существование и единственность неподвижной точки.

Пусть $x \in X$. Из шага 1 получаем, что $\{D_T(T^nx)\}$ сходится к 0. Значит, $\{T^nx\}$ — последовательность Коши в X. Поскольку X полно, существует $z \in X$ такое, что $\{T^nx\}$ сходится к z. Опять из шага 2 имеем $\lim_{n \to \infty} D_T(T^nx, T^nz) = 0$. Тогда $\{T^nz\}$ сходится к z.

Теперь мы хотим показать, что $D_T(z)=0$. Рассуждая от противного, считаем $\varepsilon:=D_T(z)>0$. Поскольку $\lim_{n\to\infty}D_T(T^nx)=0$, то существует $n_0\in\mathbb{N}$ такое, что

$$\varepsilon = D_T(z) = \cdots D_T(T^{n_0 - 1}z) = D_T(T^{n_0}z) > D_T(T^{n_0 + 1}z),$$

следовательно,

$$\varepsilon = D_T(T^{n_0}z) = \sup\{d(T^{n_0}z, T^nz) : n > n_0\}.$$

При $n > n_0$ получаем

$$d(T^{n_0}z, T^nz) \leqslant \max\{\varphi \circ D_T(T^{n_0-1}z), \varphi \circ D_T(T^{n_0-1}z, T^{n-1}z), \varphi \circ D_T(T^{n-1}z)\}.$$

Мы рассматриваем следующие два случая:

• если $n-1=n_0$, то имеем

$$\varphi \circ D_T(T^{n-1}z) = \varphi \circ D_T(T^{n_0}z) = \varphi(\varepsilon);$$

• если $n-1 > n_0$, то имеем

$$\varphi \circ D_T(T^{n-1}z) \leqslant D_T(T^{n-1}z) \leqslant D_T(T^{n_0+1}z) < \varepsilon.$$

Далее,

$$d(T^{n_0}z, T^nz) \leqslant \max\left\{\varphi \circ D_T(T^{n_0-1}z), \varphi \circ D_T(T^{n_0-1}z), \max\{\varphi(\varepsilon), D_T(T^{n_0+1}z)\}\right\} \leqslant \\ \leqslant \max\{\varphi(\varepsilon), D_T(T^{n_0+1}z)\}.$$

Поскольку n произвольно, получаем

$$\varepsilon = \sup\{d(T^{n_0}z, T^nz) : n > n_0\} \leqslant \max\{\varphi(\varepsilon), D_T(T^{n_0+1}z)\} < \varepsilon.$$

Это приводит к противоречию. Следовательно, $D_T(z)=0$, тогда z — неподвижная точка T в X. Единственность неподвижной точки сразу следует из того, что $\lim_{n\to\infty} D_T(T^nx,T^nz)=0$.

Следствие 1 (теорема 1.2 в [18]). Пусть (X,d) — полное метрическое пространство, а T — отображение на X. Предположим, что существует функция φ из $[0,\infty)$, удовлетворяющая следующим условиям:

- (i) φ не убывает;
- (ii) $\lim_n \varphi^n(t) = 0$ выполняется для всех $t \in (0,\infty)$ таких, что $\varphi^n = \varphi \circ \varphi \ldots \circ \varphi$ n раз;
 - (iii) $d(Tx, Ty) \leqslant \varphi \circ d(x, y)$ выполняется для всех $x, y \in X$.

Тогда T имеет единственную неподвижную точку z. Более того, $\{T^nx\}$ сходится κ z для любого $x \in X$.

Следствие 2 (теорема 5 в [16]). Пусть (X,d) — полное метрическое пространство и пусть T — отображение в себя на X такое, что $D_T(x) < \infty$ для всех $x \in X$. Предположим, что существует функция φ из $[0,\infty)$, удовлетворяющая следующим условиям:

- (i) $\varphi(t) < t$ выполняется для всех $t \in (0, \infty)$;
- (ii) для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любого $t \in (0, \infty)$

$$\varepsilon < t < \varepsilon + \delta$$
 because $\varphi(t) \leqslant \varepsilon$;

 $(iii)\ d(Tx,Ty)\leqslant \varphi\circ D_T(x,y)\ выполняется\ для\ всех\ x,y\in X.$

Тогда T имеет единственную неподвижную точку z. Более того, $\{T^nx\}$ сходится κ z для любого $x \in X$.

Следующий пример показывает, что теорема 3 улучшает теорему 2.

 $\Pi pumep$. Пусть $X = [0, \pi]$ имеет метрику, определенную следующим образом:

$$d(x,y) = \begin{cases} \max\{x,y\}, & \text{если} \quad x \neq y, \\ 0, & \text{если} \quad x = y. \end{cases}$$
 (3)

Определим отображение T на X с помощью

$$Tx = egin{cases} \sin x, & \text{если} & x \in \left[rac{\pi}{2}, \pi
ight], \ 0 & \text{в противном случае.} \end{cases}$$

Пусть φ — функция из $[0,\infty)$, определяемая равенством

$$\varphi(t) = \begin{cases} \sin t, & \text{если} \quad t \in \left[\frac{\pi}{2}, \pi\right], \\ 0 & \text{в противном случае.} \end{cases}$$

Легко видеть, что φ удовлетворяет условию (i) теоремы 3. Теперь для выполнения условия (ii) пусть $\varepsilon > 0$ и существуют два случая.

Случай 5. Если $0 < \varepsilon < \frac{\pi}{2}$, то существует $\delta = \frac{\pi}{4} - \frac{\varepsilon}{2}$ такое, что для любого $t \in (0, \infty)$

$$\varepsilon < t < \varepsilon + \delta$$
 влечет $\varphi(t) = 0 \leqslant \varepsilon$.

Случай 6. Если $\varepsilon \geqslant \frac{\pi}{2}$, то существует $\delta = \varepsilon$ такое, что для любого $t \in (0, \infty)$

- если $t\notin [\frac{\pi}{2},\pi]$, то $\varphi(t)=0\leqslant \varepsilon;$ если $t\in [\frac{\pi}{2},\pi]$, то

$$\varepsilon < t < \varepsilon + \delta$$
 влечет $\varphi(t) = \sin(t) < \sin(\varepsilon) \leqslant \varepsilon$.

Кроме того, T удовлетворяет условиям (iii) теоремы 3 и следствию 3. Действительно, пусть $x, y \in X$, тогда мы имеем

$$d(Tx, Ty) \leq \max \left\{ \sin x, \sin y \right\} = \max \{ \varphi \circ D_T(x), \varphi \circ D_T(y) \} =$$
$$= \max \{ \varphi \circ D_T(x), \varphi \circ D_T(x, y), \varphi \circ D_T(y) \},$$

0 — единственная неподвижная точка T на X, но T не удовлетворяет условию (iii)теоремы 2. Действительно, пусть $x, y \in X$. Без ограничения общности считаем, что x < y. Если $x, y \in \left[\frac{\pi}{2}, \pi\right]$, то получаем

$$d(Tx, Ty) = \sin x > \sin y = \varphi \circ D_T(x, y).$$

Как следствие нашего основного результата, имеем следующий новый результат с новым сжатием.

Следствие 3. Пусть (X, d) — полное метрическое пространство и пусть T отображение на X такое, что $D_T(x) < \infty$ для всех $x \in X$. Предположим, что существует функция φ из $[0,\infty)$ такая, что:

- (i) $\varphi(t) < t$ выполняется для всех $t \in (0, \infty)$:
- (ii) для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любого $t \in (0, \infty)$

$$\varepsilon < t < \varepsilon + \delta$$
 became $\varphi(t) \leq \varepsilon$:

(iii) для любых $x, y \in X$ справедливо

$$d(Tx, Ty) \leq \max\{\varphi \circ D_T(x), \varphi \circ D_T(y)\}.$$

Тогда T имеет единственную неподвижную точку z. Более того, $\{T^nx\}$ cxo- $\partial umcя \ \kappa \ z \ \partial ля \ любого \ x \in X.$

Литература/References

- 1. Edelstein M. On fixed and periodic points under contractive mappings. J. London Math. Soc.
- 2. Hegedüs M., Szilágyi T., Equivalent conditions and a new fixed point theorem in the theory of contractive type mappings. Math. Jpn. 25, 147–157 (1980).
- 3. Touail Y., El Moutawakil D. Bennani S. Fixed Point theorems for contractive selfmappings of a bounded metric space. Journal of Function Spaces 2019, Article ID 4175807, 3 (2019).
- 4. Touail Y., El Moutawakil D. Fixed point results for new type of multivalued mappings in bounded metric spaces with an application. Ricerche mat (2020).
- 5. Touail Y., El Moutawakil D. Fixed point theorems on orthogonal complete metric spaces with an application. Int. J. Nonl. Anal. Appl. 1801–1809 (2021).

- 6. Touail Y., El Moutawakil D. $\perp_{\psi F}$ -contractions and some fixed point results on generalized orthogonal sets. Rend. Circ. Mat. Palermo, II. Ser 70 1459–1472 (2021).
- 7. Touail Y. On multivalued $\perp_{\psi F}$ -contractions on generalized orthogonal sets with an application in integral inclusions. *Probl. Anal. Issues Anal.* **11**, 29 (3), 109–124 (2022).
- 8. Touail Y., Moutawakil D. El. Fixed point theorems for new contractions with application in dynamic programming. Vestnik St Petersburg University. Mathematics 54, 206–212 (2021).
- 9. Aamri M., El Moutawakil D. τ-distance in general topological spaces with application to fixed point theory. Southwest Journal of Pure and Applied Mathematics 2, December, 1–5 (2003).
- 10. Touail Y., El Moutawakil D. New common fixed point theorems for contractive self mappings and an application to nonlinear differential equations, *Int. J. Nonlinear Anal. Appl*, 903–911 (2021).
- 11. Touail Y., El Moutawakil D., Some new common fixed point theorems for contractive selfmappings with applications. *Asian. Eur. J. Math.* **15** (4) 2250080 (2022).
- 12. Touail Y., Jaid A., El Moutawakil D. New contribution in fixed point theory via an auxiliary function with an application. Ricerche mat (2021).
- 13. Browder F. E. Nonexpansive nonlinear operators in a Banach space. *Proc. Nat. Acad. Sei.* **54** (1965).
 - 14. Göhde D. Zum prinzip der kontraktiven Abbildung. Math. Nachr 30, 251–258 (1965).
 - 15. Clarkson J. A. Uniformly convex spaces. Trans. Amer. Math. Soc. 40, 396-414 (1936).
- 16. Suzuki T. A generalization of Hegedüs—Szilágyi's fixed point theorem in complete metric spaces. Fixed Point Theory Appl. 2018, 1 (2018).
- 17. Meir A., Keeler E. A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326–329 (1969).
- 18. Matkowski J. Integrable Solutions of Functional Equations. *Diss. Math.* **127**. Institute of Mathematics Polish Academy of Sciences, Warsaw (1975).

Статья поступила в редакцию 26 января 2023 г.; доработана 15 августа 2023 г.; рекомендована к печати 31 августа 2023 г.

Контактная информация:

 $Tyanb\ Nce\phi$ — аспирант; youssef9touail@gmail.com $Anb-Mymasakunb\ \mathcal{I}pucc$ — проф.; d.elmoutawakil@gmail.com

Remarks and a generalization of Hedudüs-Szilágyi's fixed point theorem

Y. Touail¹, D. El Moutawakil²

Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, 30050, Morocco

² Université Chouaib Doukkali, Morocco, El Jadida

For citation: Touail Y., El Moutawakil D. Remarks and a generalization of Hedudüs—Szilágyi's fixed point theorem. *Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy*, 2024, vol. 11 (69), issue 1, pp. 152–160. https://doi.org/10.21638/spbu01.2024.110 (In Russian)

A new generalization of the so-called Hedudüs—Szilágyi's fixed point theorem by introducing a new contractive condition in the framework of complete metric spaces. As application, we get a new fixed point theorem which generalizes and improves many known results in literature.

Keywords: Hedudüs—Szilágyi's fixed point theorem, complete metric spaces, new type contractive condition, Meir—Keeler contraction, orbit.

Received: January 26, 2023 Revised: August 15, 2023 Accepted: August 31, 2023

Authors' information:

 $Youssef\ Touail-youssef9touail@gmail.com\\ Driss\ El\ Moutawakil-d.elmoutawakil@gmail.com$