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We prove that if every element in the unit group U(R) of a weakly exchange ring R is a sum
of two idempotents of R, then every element in the center C(R) of R is a sum of two central
idempotents of R. This somewhat enlarges results due to Koşan — Ying — Zhou published
in Can. Math. Bull. (2016) as well as due to Karimi — Koşan — Zhou published in Contemp.
Math. (2018). Moreover, we show that each nilpotent of order not exceeding 2 in a von
Neumann regular ring is a difference of two special (left-right symmetric) idempotents. This
somewhat refines a recent result by O’Meara stated in a still unpublished preprint (2018).
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1. Introduction and Background. Everywhere in the text of the present paper,
all our rings R are assumed to be associative, containing the identity element 1, which in
general differs from the zero element 0 of R, and all subrings are unital (i. e. containing
the same identity as that of the former ring). Our terminology and notations are mainly
in agreement with [1]. For instance, J(R) denotes the Jacobson radical of R, U(R) the
set of all units in R, Id(R) the set of all idempotents in R, Nil(R) the set of all nilpotents
in R, and C(R) the center of R. We shall also denote the set of all unipotents (that are
sums of 1 and a nilpotent) in R like Unip(R), that is, Unip(R) = 1 +Nil(R).

Recall that a ring R is said to be π-regular if for every r ∈ R there exist an element a
from R and a positive integer i, both depending on r, such that ri = riari. In particular,
when i = 1 for each r, the ring R is known as von Neumann regular. An important
subclass of the class of π-regular rings forms the class of so-termed strongly π-regular
rings for which, in terms above, ri = r2ia. Besides, a proper subclass of the class of von
Neumann regular rings forms the class of so-called unit-regular rings for which, in the
current terms, r = rar with a ∈ U(R). It is principally known that any von Neumann
regular element of a strongly π-regular ring is unit-regular (compare with the comments
on p. 641 from [2]). However, a von Neumann regular nilpotent element in general may
not be unit-regular (see also [2] for more details). Nevertheless, it was established in
[2, Theorem 4] that a nilpotent element each power of which is von Neumann regular
must be unit-regular; thus, any nilpotent in a von Neumann regular ring is necessarily
unit-regular. We shall freely use this nice fact below with proper citation.

We also recall that a ring R is called exchange provided for any r ∈ R the existence
of e ∈ rR ∩ Id(R) with 1 − e ∈ (1 − r)R, and weakly exchange provided for any r ∈ R
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the existence of e ∈ rR ∩ Id(R) with 1− e ∈ (1 − r)R ∪ (1 + r)R. It is well known that
π-regular rings themselves are exchange.

Answering a question due to the present author, it was shown in [3] that in strongly
π-regular rings (and more generally, even in the classical von Neumann regular rings) the
inclusion Nil(R) ⊆ Id(R) − Id(R), and hence the inclusion Unip(R) ⊆ Id(R) + Id(R),
always holds; notice that we shall somewhat refine this in the rather specific case of
nilpotent elements of order not exceeding 2. Since Unip(R) ⊆ U(R), we are motivated to
study the structure of those rings R for which U(R) ⊆ Id(R)+Id(R). Specifically, we will
treat the partial converse of whether or not (weakly) exchange rings whose units are sums
of two idempotents are π-regular, as well as of whether or not rings of characteristic 2
containing only unipotent units and whose elements are sums of two idempotents are
π-regular (compare with the two questions posed at the end of the article). About the
latter query, it is worth noticing that in [4] exchange rings R with U(R) = Unip(R)
were completely described as those rings for which J(R) is contained in Nil(R) and the
quotient R/J(R) is a Boolean ring.

2. Main Results. First and foremost, we begin with the promised refining of the
mentioned above result from [3]. To that aim, we shall say that two idempotents e, f of
a given ring are left-right symmetric, provided the two equalities ef = e and fe = f are
valid. Our statement is closely related to the so-called “idempotent sum number” explored
in detail in [5].

So, we come to the following expected refinement.

Proposition 2.1. In von Neumann regular rings every nilpotent of exponent less
than or equal to 2 is the difference of two left-right symmetric idempotents.

Proof. Let q be a nilpotent in a von Neumann regular ring R such that q2 = 0.
Referring to [2, Theorem 4], q has to be a unit-regular element. Then, q can be represented
as q = ue for some u ∈ U(R) and e ∈ Id(R). Hence, ueue = 0 implies that eue = 0
which, in turn, yields eq = 0 and qe = q. One easily verifies that the presentation of q
like

q = [e− eq(1− e)]− [e− (1− e)qe]

is fulfilled, where the first bracket is obviously equal to e whereas the second bracket is
equal to e − q, say f . Certainly, both e and f are idempotents as well as an easy check
shows that ef = e(e − q) = e − eq = e and fe = (e − q)e = e − qe = e − q = f , as
claimed.

However, it is worthwhile noticing that, what we have proved in this statement could
not have happened looking at the proof of the corresponding result in [3]. Likewise, it is
not obvious at all whether this fact can be considerably extended to arbitrary nilpotents
of exponent exceeding 2. It is done in [3] for arbitrary nilpotents, but, unfortunately, the
proof there does not directly guarantee that the existing idempotents in the difference
are left-right symmetric.

The following technicality extends a corresponding result from [6] as well as our
proof somewhat strengthens that in [7, Lemma 3.11].

Lemma 2.2. In a ring R for which U(R) ⊆ Id(R) + Id(R), the decomposition
R ∼= R1 × R2 is valid, where R1 is a ring with 2 = 0 and R2 is a ring with 3 = 0. In
particular, 6 = 0 in R.
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Proof. Write −1 = e+f for some e, f ∈ Id(R), and hence −1−e = f . By squaring,
we get that 1+ 3e = −1− e, i. e. 2 = −4e. Squaring again, we obtain that 4 = 16e = −8.
Finally, 12 = 4 × 3 = 0. Since gcd(4, 3) = 1, with the classical Chinese Remainder
Theorem at hand, one decomposes R ∼= R1 × R2 for some rings R1 and R2 whose unit
groups continue to be sums of two idempotent sets of R1 and R2, respectively, and for
which 4 = 0 in R1 and 3 = 0 in R2. We claim even that 2 = 0 is fulfilled in R1. In fact,
since 22 = 0 holds in R1, it follows that 2 ∈ Nil(R1). Thus, 3 ∈ U(R1) and, thereby, by
assumption it must be that 2 = g− h for some two g, h ∈ Id(R1). Hence, 1− g = −1− h
and squaring this, we get that 1 − g = 1 + 3h = 1 − h = −1 − h as 4 = 0. Finally, the
last equality yields that 2 = 0, as claimed. The conclusion that 6 = 0 holds in R is now
immediate.

We now come to the folklore omnibus needed for our successful presentation.

Proposition 2.3. Let R be a weakly exchange ring. Then C(R) ⊆ U(R)± Id(R).

Proof. Given an arbitrary element x ∈ C(R), there exists an idempotent e ∈ xR
such that 1− e ∈ (1 − x)R or 1 − e ∈ (1 + x)R. So, we write that e = xc = cx for some
c ∈ R. Letting cxc = c2x = xc2, we verify that e = xa = ax as well as that ce = ae = a.
First, assume that 1−e lies in (1+x)R, so one may write that 1−e = (1+x)d = d(1+x).
Setting b = d(1+x)d = d2(1+x) = (1+x)d2, we obtain that 1− e = (1+x)b = b(1+x).
Seeing that b = b(1− e) = d(1 + x)d(1− e) = d(1− e) = d(1 + x)d, one derives now that
[x + (1 − e)][a + b] = 1 because (1 − e)a = eb = 0. By analogy, [a + b][x + (1 − e)] = 1
since a(1− e) = be = 0. Finally, one infers that x+ (1− e) is a unit, as required.

Next, we can process similarly for the situation when 1 − e ∈ (1 − x)R to get that
x − (1 − e) is a unit with the inverse a − b, thus giving up the wanted assertion after
all.

Let us recollect now that a ring is said to be tripotent if each of its elements satisfies
the equation x3 = x. So, tripotent rings are obviously commutative von Neumann regular
rings.

The next technical statement is crucial.

Lemma 2.4. Suppose that R is a ring of characteristic 3 such that t = v + f for
some t, v, f ∈ R with t2 = 0, v2 = 1 and f2 = f . Then f = 1.

Proof. Squaring the equality t = v + f , we derive that 1 + f + vf + fv = 0.
Multiplying this by f on both sides, we obtain that 2f + vf + fvf = 0 = 2f + fv+ fvf .
Hence vf = fv and thus 1 + f = −2vf = vf as 3 = 0. Multiplying this by f again on
the right, we get that 2f = vf , so that f = −vf because 3 = 0. This, in turn, yields that
0 = 1 + f − vf = 1 + 2f = 1− f since 3 = 0, i. e. f = 1, as required.

The next comments shed some more light on the previous technicality.

Remark 2.5. Actually, substituting f = 1 in the expression for t, one detects that
t = v + 1 and, hence, by squaring it follows that v = 2 as 3 = 0. Therefore, t = 0—
compare with the corresponding third paragraph of the proof of Theorem 2.6 (see below).

We now have all the ingredients necessary to establish the following chief statement.

Theorem 2.6. Suppose R is a weakly exchange ring such that U(R) ⊆ Id(R) +
Id(R). Then C(R) = Id(C(R)) + Id(C(R)). In particular, C(R) is a tripotent ring.
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Proof. According to Lemma 2.2, one decomposes that R ∼= R1 × R2 for some
weakly exchange rings R1 and R2 such that 2 = 0 in R1, 3 = 0 in R2 and such that
U(R1) ⊆ Id(R1) + Id(R1), U(R2) ⊆ Id(R2) + Id(R2).

We first assert that C(R1) is a Boolean ring. To this goal, we firstly note that, as 2 = 0
in R1, it is an exchange ring with C(R1) ⊆ U(R1)+Id(R1) and U(R1) ⊆ Id(R1)+Id(R1)
by an appeal to Proposition 2.3. Therefore, C(R1) ⊆ Id(R1) + Id(R1) + Id(R1) and
so C(R1) ⊆ Id(R1). In fact, for every c ∈ C(R1) we write that c = e + f + h for
e, f, h ∈ Id(R1). Observing that (e + f)h = h(e + f) and squaring c = e + f + h, we
deduce that c2 = (e+f)2+h2 = c+ef+fe. But c2− c ∈ C(R1) whence c2− c = ef +fe
ensures that (c2− c)e = efe+fe = efe+ef = e(c2− c) and, thus, that ef = fe. Finally,
c2 − c = 2ef = 0 deriving that c2 = c, as asserted.

We now claim that the second direct factor R2 is a reduced ring and, thus, it is
abelian. To show this, for any a2 ∈ R2 with a22 = 0, we write that −1 + a2 = e2 + f2
for some e2, f2 ∈ Id(R2) because −1 + a2 ∈ U(R2). Thus, a2 = (1 + e2) + f2, where
(1 + e2)

2 = 1 since 3 = 0. Owing to Lemma 2.4, we get that f2 = 1 and so 1 − e2 =
−a2 ∈ Id(R2) ∩Nil(R2) = {0}. Finally, a2 = 0, as claimed. Furthermore, in accordance
with [8], we conclude that R2 must be weakly clean, that is, R2 = U(R2)± Id(R2) which
allows us to detect that R2 = Id(R2) + Id(R2)± Id(R2). This enables us that R2 should
be even commutative, that is, R2 = C(R2) and consequently r32 = r2 for all r2 ∈ R2.
Thus, as it is well-known, R2 is a subdirect product of a family of copies of the field Z3.

Further, since C(R) ∼= C(R1)×C(R2) = C(R1)×R2, one concludes that all elements
of the ring C(R) satisfy the equation x3 = x and, thereby, C(R) is too a subdirect
product of a single copy or isomorphic copies of Z3, as needed. This substantiates our
initial statement after all.

Some more commentaries in that way are worthwhile as well.

Remark 2.7. Concerning the explicit structure of the ring R, we discover the status
of clean (which are necessarily exchange) rings R, that is, any element in it is the sum of
a unit and an idempotent, whose units are sums of two idempotents. One then observes
that these rings R are of the type R = Id(R) + Id(R) + Id(R). In the abelian case
these rings are of necessity commutative and have a complete description (see [9]), that
unambiguously shows that they have to be π-regular.

Moreover, it is well known that the center of a non-abelian (weakly) exchange ring
need not be exchange (e. g. see [10]) and thus it is not von Neumann regular either. That
is why, the condition stated on U(R) is essential and cannot be ignored. However, the
center of a von Neumann regular ring is strongly regular and so it is a clean ring.

We finish off our work with the following two queries of some interest and importance.

Problem 2.8. Is it true that (weakly) exchange rings whose units are sums of two
idempotents are π-regular (and, in some partial cases, even von Neumann regular) rings?

Problem 2.9. Suppose that R = Id(R) + Id(R) is a ring of characteristic 2 whose
U(R) = Unip(R). Does it follow that R is π-regular and, in particular, even exchange?

In these two aspects, at first glance, we could consider the commutative case and
especially the indecomposable commutative ring Z4 = {0, 1, 2, 3 | 4 = 0} which is mani-
festly not von Neumann regular, but in which the following relationships hold: J(Z4) =
Nil(Z4) = {0, 2}, Id(Z4) = {0, 1}, U(Z4) = Unip(Z4) = {1, 3} and Z4/J(Z4) ∼= Z2.
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Besides, it is easily seen that the unit 3 cannot be represented as a sum of two idempo-
tents; however, it is the difference of two idempotents like 3 = 0 − 1. This means that
the condition U(R) ⊆ Id(R) + Id(R) in Theorem 2.6 cannot be replaced by the more
general one U(R) ⊆ Id(R)± Id(R).

Nevertheless, it seems that the solution to the latter problem stated above will be in
general “no”, provided that a ring R having the following properties could be successfully
constructed: R = Id(R) + Id(R) 6= Id(R), 2 = 0, J(R) = {0} and U(R) = Unip(R) 6=
{1}. In fact, if these rings R were exchange, appealing to [4] it must be that R is Boolean,
contrary to the construction.
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