Двусторонняя оценка функции Лебега сумм Фурье по многочленам, ортогональным на неравномерных сетках

А. А. Нурмагомедов, Н. К. Расулов

Дагестанский государственный аграрный университет им. М. М. Джамбулатова, Российская Федерация, 367032, Махачкала, ул. М. Гаджиева, 180

Для цитирования: *Нурмагомедов А. А.*, *Расулов Н. К.* Двусторонняя оценка функции Лебега сумм Фурье по многочленам, ортогональным на неравномерных сетках // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. 2018. Т. 5 (63). Вып. 3. С. 417–430. https://doi.org/10.21638/11701/spbu01.2018.306

Пусть $\Omega=\{t_0,t_1,\ldots,t_N\}$ и $\Omega_N=\{x_0,x_1,\ldots,x_{N-1}\}$, где $x_j=(t_j+t_{j+1})/2,\ j=0,1,\ldots,N-1,$ — произвольные системы различных точек отрезка [-1,1]. В данной работе для произвольной непрерывной на отрезке [-1,1] функции f(x) построены дискретные суммы Фурье $S_{n,N}(f,x)$ по системе многочленов $\{\hat{p}_{k,N}(x)\}_{k=0}^{N-1}$, образующих ортонормированную систему на неравномерных системах точек Ω_N , состоящих из конечного числа N точек отрезка [-1,1] с весом $\Delta t_j=t_{j+1}-t_j$. Найден порядок роста для функции Лебега $L_{n,N}(x)$ рассматриваемых частных дискретных сумм Фурье $S_{n,N}(f,x)$ при $n=O(\delta_N^{-2/7}),\ \delta_N=\max_{0\leq j\leq N-1}\Delta t_j$. А именно, получена двусторонняя поточечная оценка для $L_{n,N}(x)$, которая зависит от n и положения точки $x\in[-1,1]$.

Ключевые слова: многочлен, ортогональная система, сетка, весовая оценка, асимптотическая формула, дискретные суммы Фурье, функция Лебега.

1. Введение. Пусть $\Omega = \{t_j\}_{j=0}^N$ — дискретное множество (сетка), состоящее из конечного числа различных точек отрезка $[-1,1]:-1=t_0< t_1<\ldots< t_{N-1}< t_N=1.$ Рассмотрим также еще одну сетку $\Omega_N=\{x_0,x_1,\ldots,x_{N-1}\}$, состоящую из N точек x_j , где $x_j=(t_j+t_{j+1})/2,\ j=0,1,\ldots,N-1.$

Через

$$\hat{p}_{k,N}(x) = \hat{p}_k(x; \Omega_N) \quad (k = 0, 1, \dots, N - 1)$$
(1.1)

обозначим последовательность многочленов, образующих ортонормированную систему на сетке Ω_N в следующем смысле $(0 \le n, m \le N-1)$:

$$(\hat{p}_{n,N}, \hat{p}_{m,N}) = \sum_{j=0}^{N-1} \hat{p}_{n,N}(x_j)\hat{p}_{m,N}(x_j)\Delta t_j = \delta_{nm},$$
(1.2)

где $\triangle t_j = t_{j+1} - t_j, j = 0, 1, \dots, N-1.$

Далее, пусть $\delta_N = \max_{0 \le j \le N-1} \Delta t_j$, \mathfrak{A}_2 — наименьшая константа в неравенстве типа В. А. Маркова для оценки производных алгебраических многочленов в метрике пространства $L_1[-1,1]$ (см. [1]):

$$\int_{-1}^{1} |q_n''(x)| \, dx \le \mathfrak{X}_2 n^4 \int_{-1}^{1} |q_n(x)| \, dx,$$

[©] Санкт-Петербургский государственный университет, 2018

 $\widehat{P}_n(x)$ — ортонормированный многочлен Лежандра, $C[-1,\,1]$ — пространство непрерывных на отрезке [-1,1] функций f(x) с нормой $||f|| = ||f||_{C[-1,1]}$ $\max_{-1 < x < 1} |f(x)|$, \mathcal{P}_n —пространство алгебраических многочленов степени не выше $n,\,E_n(\bar f)=\min_{l_n\in\mathcal P_n}\|\,f-l_n\,\|_{C[-1,1]}$ — наилучшее приближение функции f алгебраическими многочленами степени не выше n.

Далее, через $S_{n,N}(f)=S_{n,N}(f,x)$ обозначим частную сумму n-го порядка ряда Фурье функции f(x) по системе $\{\hat{p}_{k,N}(x)\}_{k=0}^{N-1}$, т. е.

$$S_{n,N}(f) = \sum_{k=0}^{n} \hat{f}_k \hat{p}_{k,N}(x), \tag{1.3}$$

где $\hat{f}_k = \sum_{j=0}^{N-1} f(x_j) \hat{p}_{k,N}(x_j) \Delta t_j$. Как известно, задача об оценке отклонения частной суммы $S_{n,N}(f)$ ряда Фурье функции $f \in C[-1,1]$ по системе $\{\hat{p}_{k,N}(x)\}_{k=0}^{N-1}$ от самой функции f при $x \in [-1,1]$ посредством неравенства Лебега

$$|f(x) - S_{n,N}(f,x)| \le (1 + L_{n,N}(x))E_n(f)$$
 (1.4)

сводится к оценке функции Лебега

$$L_{n,N}(x) = \sum_{j=0}^{N-1} |K_{n,N}(x,x_j)| \, \Delta t_j, \tag{1.5}$$

где $K_{n,N}(x,x_j) = \sum_{k=0}^n \hat{p}_{k,N}(x)\hat{p}_{k,N}(x_j)$.

Здесь и далее через $c, c(a, b), c(\alpha, \beta)$ обозначаются положительные постоянные, зависящие лишь от указанных параметров и, вообще говоря, разные в разных случаях.

В прикладных задачах, связанных с обработкой, сжатием и передачей дискретной информации, вопросы приближения функций, заданных на дискретных системах точек, часто решаются с помощью рядов Фурье по соответствующей системе ортонормированных на этих сетках многочленов. В свою очередь, как известно, решение этого вопроса сводится к оценке функции Лебега частных сумм Фурье по этим многочленам — они позволяют устанавливать достаточные условия равномерной сходимости рядов Фурье на всем промежутке ортогональности. Здесь следует отметить, что эти вопросы были предметом исследования в работах многих авторов, среди которых мы укажем лишь некоторые, посвященные изучению функции Лебега сумм Фурье—Якоби, сходимости рядов Фурье—Якоби и их дискретных аналогов.

Из рассуждений, содержащихся в [2, раздел 9.3], легко следует, что на отрезке $[-1+\varepsilon,1-\varepsilon]$, где $\varepsilon>0$, функция Лебега сумм Фурье—Якоби есть $O(\ln n)$. Г. Рау установил [3], что в точках x=1 и x=-1 функция Лебега имеет порядок соответственно $n^{\alpha+1/2}$ и $n^{\beta+1/2}$. Отсюда еще не вытекает, что наибольшее значение этой функции имеет порядок $n^{\lambda+1/2}$, где $\lambda=\max\{\alpha,\beta\}$. Однако для многочленов Лежандра (т. е. при $\alpha = \beta = 0$) Т. Гронуоллом было показано [4], что функция Лебега принимает наибольшее значение в концах отрезка ортогональности. Такое же утверждение справедливо и при целых и полуцелых равных друг другу lpha и eta. Далее, в работе [6] при $\alpha, \beta > -\frac{1}{2}$ получен точный порядок роста функции Лебега сумм Фурье—Якоби, что уточняет более раннюю оценку тех же авторов [5]:

$$L_n^{\alpha,\beta}(x) \leq c(\alpha,\beta) \left\{ \ln(n+1) + \frac{n^{\alpha+1/2}}{(n\sqrt{1-x})^{\alpha+1/2}+1} + \frac{n^{\beta+1/2}}{(n\sqrt{1+x})^{\beta+1/2}+1} \right\},$$

где $x \in [-1,1], n = 1,2,...$

Впоследствии аналогичные исследования функции Лебега сумм Фурье—Якоби в зависимости от точек отрезка [-1,1], параметров α и β , да и для других ортогональных систем, проводились в работах многих авторов. В работе [7] И. И. Шарапудиновым исследован вопрос о сходимости частных сумм Фурье—Чебышёва $S_{n,N}(f)=S_{n,N}(f,x)$ порядка $n\leq N-1$ по многочленам Чебышёва $\{\tau_{n,N}(x)\}_{n=0}^{N-1}$, образующим ортонормированную с весом $\mu_N(x)=2/N$ систему на множестве $\Omega=\{-1+2j/(N-1)\}_{j=0}^{N-1}$ к функции $f\in C[-1,1]$. В частности, доказано, что при $n=O(N^{1/2})$ норма оператора $S_{n,N}=S_{n,N}(f)$ в C[-1,1] имеет порядок $\|S_{n,N}\|=O(n^{1/2})$.

И по аналогии с этими работами мы также исследовали аппроксимативные свойства сумм Фурье по многочленам, ортогональным на произвольных дискретных системах точек отрезка [-1,1] [8, 9]. В частности, полученные нами в данной работе оценки функции Лебега дискретных сумм Фурье также учитывают величину номера n и положение точки $x \in [-1,1]$.

2. Вспомогательные утверждения. Здесь мы, в первую очередь, приведем ранее полученные нами результаты [10], которые необходимы нам для дальнейшего исследования.

Теорема 2.1. Пусть 0 < b < 1, $0 < a \le \left\{\frac{1-b}{2\varpi_2}\right\}^{1/4}$, $1 \le n \le a\delta_N^{-1/2}$, $-1 \le x \le 1$. Тогда имеет место асимптотическая формула

$$\hat{p}_{n,N}(x) = \hat{P}_n(x) + v_{n,N}(x), \tag{2.1}$$

для остаточного члена $v_{n,N}(x)$ которой справедлива оценка

$$|v_{n,N}(x)| \le c(a,b)\delta_N n^{5/2} \left[\sqrt{1-x^2} + \frac{1}{n} \right]^{-1/2}.$$
 (2.2)

Теорема 2.2. Пусть $0 < b < 1, 0 < a \le \left\{\frac{1-b}{2\varpi_2}\right\}^{1/4}, \ 1 \le n \le a\delta_N^{-1/2}$. Тогда существует постоянная c(a,b)>0 такая, что

$$|\hat{p}_{n,N}(x)| \le c(a,b) \left(\delta_N n^{5/2} + 1\right) \left[\sqrt{1-x^2} + \frac{1}{n}\right]^{-1/2} \quad (-1 \le x \le 1).$$
 (2.3)

Далее, в качестве следствий вышеприведенных теорем, соответственно, отметим следующие утверждения.

Следствие 2.1. Пусть $0 < b < 1, \ 0 < a \le \left\{\frac{1-b}{2\varpi_2}\right\}^{1/4}, n = O(\delta_N^{-2/7}), \ -1 \le x \le 1.$ Тогда имеет место асимптотическая формула

$$\hat{p}_{n,N}(x) = \hat{P}_n(x) + v_{n,N}(x),$$
(2.4)

для остаточного члена $v_{n,N}(x)$ которой справедлива оценка

$$|v_{n,N}(x)| = O(n^{-1/2}). (2.5)$$

Следствие 2.2. Пусть $0 < b < 1, 0 < a \le \left\{\frac{1-b}{2\varpi_2}\right\}^{1/4}, \ n = O(\delta_N^{-2/7})$. Тогда имеют место следующие оценки:

$$|\hat{p}_{n,N}(x)| \le c(a,b)n^{1/2}, \quad -1 \le x \le -1 + cn^{-2}, \quad 1 - cn^{-2} \le x \le 1,$$
 (2.6)

$$|\hat{p}_{n,N}(x)| \le c(a,b)(1-x)^{-1/4}, \quad 0 \le x \le 1 - cn^{-2},$$
 (2.7)

$$|\hat{p}_{n,N}(x)| \le c(a,b)(1+x)^{-1/4}, \quad -1+cn^{-2} \le x \le 0.$$
 (2.8)

В дальнейшем нам также понадобится следующее утверждение [11, § 2, лемма 1].

Лемма 2.1. Пусть функция f(x) непрерывна и неотрицательна на промежутке $[a_1,b_1]$ и $\{t_j\}_{j=0}^{m-1}$ — сетка такая, что $a_1 < t_0 < t_1 < \dots < t_{m-1} < b_1$. Пусть $\Delta t_j = t_{j+1} - t_j$ и $[a_2,b_2] \subset [a_1,b_1]$. Тогда: 1) если f(x) монотонно возрастает на $[a_2,b_2]$, то

$$\sum_{a_2 \le t_j \le b_2} f(t_j) \Delta t_j \le \int_{a_2}^{b_2} f(x) \, dx + f(b_2) \Delta^*, \tag{2.9}$$

(2) если f(x) монотонно убывает на $[a_2,b_2]$, то

$$\sum_{a_2 \le t_j \le b_2} f(t_j) \Delta t_j \le \int_{a_2}^{b_2} f(x) \, dx + f(a_2) \Delta^*, \tag{2.10}$$

 $e \partial e \Delta^* = \max_j \Delta t_j.$

3. Некоторые свойства многочленов Якоби. Здесь мы приведем некоторые сведения о многочленах Якоби и Лежандра [2, 12]. Определим многочлены Якоби $P_n^{\alpha,\beta}(x) \ (n=0,1,2,\dots)$ с помощью формулы Родрига:

$$P_n^{\alpha,\beta}(x) = \frac{(-1)^n}{2^n n!} \frac{1}{(1-x)^{\alpha} (1+x)^{\beta}} \frac{d^n}{dx^n} \{ (1-x)^{\alpha} (1+x)^{\beta} (1-x^2)^n \},$$

где α, β — произвольные действительные числа. Если $\alpha, \beta > -1$, многочлены Якоби образуют ортогональную систему с весом $(1-x)^{\alpha}(1+x)^{\beta}$, т. е.

$$\int_{-1}^{1} (1-x)^{\alpha} (1+x)^{\beta} P_n^{\alpha,\beta}(x) P_m^{\alpha,\beta}(x) dx = h_n^{\alpha,\beta} \delta_{nm},$$

где $h_n^{\alpha,\beta}=rac{2^{\alpha+\beta+1}\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{n!(2n+\alpha+\beta+1)\Gamma(n+\alpha+\beta+1)},$ и, следовательно, $h_n^{\alpha,\beta} imes n^{-1}$ $(n=1,\,2,\,\dots).$

Ниже нам понадобятся следующие свойства многочленов Якоби:

$$\widehat{P}_n^{\alpha,\beta}(x) = \{h_n^{\alpha,\beta}\}^{-1/2} P_n^{\alpha,\beta}(x);$$

$$\left|\widehat{P}_n^{\alpha,\beta}(x)\right| \le c(\alpha,\beta) \left(\sqrt{1-x} + \frac{1}{n}\right)^{-\alpha - \frac{1}{2}} \left(\sqrt{1+x} + \frac{1}{n}\right)^{-\beta - \frac{1}{2}}; \tag{3.1}$$

$$|\hat{P}_n^{\alpha,\beta}(x)| \le c(\alpha,\beta) (1-x)^{-\frac{\alpha}{2}-\frac{1}{4}} \quad (0 \le x \le 1 - cn^{-2});$$
 (3.2)

$$\left|\widehat{P}_{n}^{\alpha,\beta}(x)\right| \le c(\alpha,\beta)n^{\alpha+\frac{1}{2}} \quad \left(1 - cn^{-2} \le x \le 1\right); \tag{3.3}$$

$$P_{n+1}^{\alpha,\beta}(x) = \frac{n+\alpha+1}{n+1} P_n^{\alpha,\beta}(x) - \frac{2n+\alpha+\beta+2}{2(n+1)} (1-x) P_n^{\alpha+1,\beta}(x). \tag{3.4}$$

Как известно, одним из частных случаев многочленов Якоби при $\alpha=\beta=0$ являются многочлены Лежандра, ортогональные с единичным весом на сегменте [-1,1]:

$$\frac{2n+1}{2} \int_{-1}^{1} P_n(x) P_m(x) dx = \delta_{nm},$$

для которых, в частности, неравенство (3.1) имеет вид

$$\left| \widehat{P}_n(x) \right| \le c \left(\sqrt{1 - x^2} + \frac{1}{n} \right)^{-\frac{1}{2}}.$$
 (3.5)

4. Оценка функции Лебега сумм Фурье по многочленам $\hat{p}_{n,N}(x)$. Справедливо следующее утверждение.

Теорема 4.1. Пусть $f \in C[-1,1], 0 < b < 1, 0 < a \le \left(\frac{1-b}{2\varpi_2}\right)^{1/4}, n = O(\delta_N^{-2/7}).$ Тогда справедливо неравенство $(-1 \le x \le 1)$

$$L_{n,N}(x) \le c(a,b) \left[\ln(n+1) + |\hat{p}_{n,N}(x)| + |\hat{p}_{n+1,N}(x)| \right].$$

ДОКАЗАТЕЛЬСТВО. По аналогии с работой [13] мы рассмотрим два случая: 1) $0 \le x \le 1 - 4n^{-2}$; 2) $1 - 4n^{-2} \le x \le 1$. Чтобы оценить функцию $L_{n,N}(x)$ при $0 \le x \le 1 - 4n^{-2}$, представим сумму (1.5) по следующей схеме:

$$L_{n,N}(x) \leq \sum_{-1 < x_j \leq -1/2} |K_{n,N}(x,x_j)| \Delta t_j + \sum_{-1/2 \leq x_j \leq \tau_1} |K_{n,N}(x,x_j)| \Delta t_j + \sum_{\tau_1 \leq x_j \leq \tau_2} |K_{n,N}(x,x_j)| \Delta t_j + \sum_{\tau_2 \leq x_j < 1} |K_{n,N}(x,x_j)| \Delta t_j = U_1 + U_2 + U_3 + U_4, \quad (4.1)$$

где $\tau_1 = x - \frac{\sqrt{1-x^2}}{n}, \ \tau_2 = x + \frac{\sqrt{1-x^2}}{n}.$

Чтобы оценить U_1 , воспользуемся формулой Кристоффеля—Дарбу $(n \leq N-2)$:

$$\sum_{k=0}^{n} \hat{p}_{k,N}(x)\hat{p}_{k,N}(x_j) = \frac{k_{n,N}}{k_{n+1,N}} \frac{\hat{p}_{n+1,N}(x)\hat{p}_{n,N}(x_j) - \hat{p}_{n,N}(x)\hat{p}_{n+1,N}(x_j)}{x - x_j}, \tag{4.2}$$

где $k_{n,N}$ — старший коэффициент многочлена $\hat{p}_{n,N}(x)$. Пользуясь аналогичными рассуждениями [14, § 3, раздел 1.3.6, с. 36] и [10, лемма 3.4] нетрудно показать справедливость неравенства

$$\frac{1}{4(1+c\delta_N^2 n^3)} \le \frac{k_{n,N}}{k_{n+1,N}} \le 1. \tag{4.3}$$

Далее, в силу (4.2), (4.3), (2.6), (2.8) и (2.10) при $n=O(\delta_N^{-2/7})$ находим

$$U_{1} \leq \sum_{-1 < x_{j} \leq -1 + 4n^{-2}} |K_{n,N}(x,x_{j})| \Delta t_{j} + \sum_{-1 + 4n^{-2} < x_{j} \leq -1/2} |K_{n,N}(x,x_{j})| \Delta t_{j} \leq$$

$$\leq c(a,b) \left[|\hat{p}_{n+1,N}(x)| + |\hat{p}_{n,N}(x)| \right] \times$$

$$\times \left[(n+1)^{1/2} \sum_{-1 < x_{j} \leq -1 + 4n^{-2}} \Delta t_{j} + \sum_{-1 + 4n^{-2} < x_{j} \leq -1/2} (1 + x_{j})^{-1/4} \Delta t_{j} \right] \leq$$

$$\leq c(a,b) \left[|\hat{p}_{n,N}(x)| + |\hat{p}_{n+1,N}(x)| \right] \left[n^{-1} + \int_{-1 + 4n^{-2}}^{-1/2} (1 + \xi)^{-1/4} d\xi + \delta_{N} n^{1/2} \right] \leq$$

$$\leq c(a,b) \left[|\hat{p}_{n,N}(x)| + |\hat{p}_{n+1,N}(x)| \right]. \quad (4.4)$$

Теперь оценим U_2 . В силу (4.2), (4.3) и (2.1) получаем

$$U_{2} \leq \sum_{-1/2 \leq x_{j} \leq \tau_{1}} \left| \frac{\hat{p}_{n+1,N}(x)\hat{p}_{n,N}(x_{j}) - \hat{p}_{n,N}(x)\hat{p}_{n+1,N}(x_{j})}{x - x_{j}} \right| \Delta t_{j} \leq$$

$$\leq \sum_{-1/2 \leq x_{j} \leq \tau_{1}} \left| \frac{\hat{P}_{n+1}(x)\hat{P}_{n}(x_{j}) - \hat{P}_{n}(x)\hat{P}_{n+1}(x_{j})}{x - x_{j}} \right| \Delta t_{j} +$$

$$+ \sum_{-1/2 \leq x_{j} \leq \tau_{1}} \left| \frac{\hat{P}_{n+1}(x)v_{n,N}(x_{j})}{x - x_{j}} \right| \Delta t_{j} + \sum_{-1/2 \leq x_{j} \leq \tau_{1}} \left| \frac{\hat{P}_{n}(x_{j})v_{n+1,N}(x)}{x - x_{j}} \right| \Delta t_{j} +$$

$$+ \sum_{-1/2 \leq x_{j} \leq \tau_{1}} \left| \frac{v_{n+1,N}(x)v_{n,N}(x_{j})}{x - x_{j}} \right| \Delta t_{j} + \sum_{-1/2 \leq x_{j} \leq \tau_{1}} \left| \frac{\hat{P}_{n}(x)v_{n+1,N}(x_{j})}{x - x_{j}} \right| \Delta t_{j} +$$

$$+ \sum_{-1/2 \leq x_{j} \leq \tau_{1}} \left| \frac{\hat{P}_{n+1}(x_{j})v_{n,N}(x)}{x - x_{j}} \right| \Delta t_{j} + \sum_{-1/2 \leq x_{j} \leq \tau_{1}} \left| \frac{v_{n,N}(x)v_{n+1,N}(x_{j})}{x - x_{j}} \right| \Delta t_{j} =$$

$$= U_{21} + U_{22} + U_{23} + U_{24} + U_{25} + U_{26} + U_{27}. \quad (4.5)$$

Займемся U_{21} . С учетом равенства $\widehat{P}_n(x)=\sqrt{\frac{2n+1}{2}}P_n(x)$, тождеств (3.4) при $\alpha=\beta=0$ и (3.5) находим

$$U_{21} \leq \sum_{-\frac{1}{2} \leq x_{j} \leq \tau_{1}} \left| \frac{(1 - x_{j}) \widehat{P}_{n}^{1,0}(x_{j}) \widehat{P}_{n}(x) - (1 - x) \widehat{P}_{n}^{1,0}(x) \widehat{P}_{n}(x_{j})}{x - x_{j}} \right| \Delta t_{j} \leq c \left[\left| \widehat{P}_{n}(x) \right| \sum_{-\frac{1}{2} \leq x_{j} \leq \tau_{1}} \frac{(1 - x_{j})^{\frac{1}{4}}}{x - x_{j}} \Delta t_{j} + \left| (1 - x) \widehat{P}_{n}^{1,0}(x) \right| \sum_{-\frac{1}{2} \leq x_{j} \leq \tau_{1}} \frac{(1 - x_{j})^{-\frac{1}{4}}}{x - x_{j}} \Delta t_{j} \right] = U_{21}^{(1)} + U_{21}^{(2)}. \quad (4.6)$$

Оценим $U_{21}^{(1)}$. В силу неравенства

$$(1-x_i)^{1/4} \le (1-x)^{1/4} + (x-x_i)^{1/4}$$

и (2.9) получаем

$$\begin{aligned} U_{21}^{(1)} &\leq c \left| \widehat{P}_n(x) \right| \left[(1-x)^{1/4} \sum_{-\frac{1}{2} \leq x_j \leq \tau_1} \frac{\Delta t_j}{x - x_j} + \sum_{-\frac{1}{2} \leq x_j \leq \tau_1} \frac{\Delta t_j}{(x - x_j)^{\frac{3}{4}}} \right] \leq \\ &\leq c \left[\int_{-1/2}^{\tau_1} \frac{d\xi}{x - \xi} + \delta_N n^2 + \left| \widehat{P}_n(x) \right| \left(\int_{-1/2}^{\tau_1} \frac{d\zeta}{(x - \zeta)^{3/4}} + \delta_N n^{3/2} \right) \right] \leq \\ &\leq c \left[\ln \frac{n}{\sqrt{1 - x^2}} + (x + 1/2)^{1/4} \left| \widehat{P}_n(x) \right| \right]. \end{aligned}$$

Отсюда в силу следствия 2.1 мы имеем

$$U_{21}^{(1)} \le c \left[\ln(n+1) + |\hat{p}_{n,N}(x)| \right]. \tag{4.7}$$

Далее, так как для $-1/2 \leq x_j \leq x - \frac{\sqrt{1-x}}{n}$ справедливо неравенство

$$(3/2)^{-1/4} \le (1-x_j)^{-1/4} \le \left(1-x+\frac{\sqrt{1-x}}{n}\right)^{-1/4} \le (1-x+2n^{-2})^{-1/4},$$

получаем

$$U_{21}^{(2)} \le c \sum_{-\frac{1}{2} \le x_j \le \tau_1} \frac{\Delta t_j}{x - x_j} \le c \left[\int_{-1/2}^{\tau_1} \frac{d\xi}{x - \xi} + \delta_N n^2 \right] \le c \ln(n+1). \tag{4.8}$$

Сопоставляя (4.6)–(4.8), находим

$$U_{21} \le c \left[\ln(n+1) + |\hat{p}_{n,N}(x)| \right]. \tag{4.9}$$

В силу (2.2), (2.9), (3.5) при $n = O(\delta_N^{-2/7})$ получаем

$$U_{2i} \le c(a,b)\delta_N n^{\frac{5}{2}} (1-x)^{-\frac{1}{4}} \sum_{\substack{-\frac{1}{2} < x_i \le \tau_1 \\ x-x_j}} \frac{(1-x_j)^{-\frac{1}{4}}}{x-x_j} \Delta t_j \le c(a,b)\delta_N n^3 \times C(a,b) \delta_N n^3 + C(a,b)\delta_N n^3 + C($$

$$\times \sum_{-\frac{1}{2} \le x_{j} \le \tau_{1}} \frac{\Delta t_{j}}{(x - x_{j})^{\frac{5}{4}}} \le c(a, b) \delta_{N} n^{3} \left[\int_{-1/2}^{\tau_{1}} \frac{d\xi}{(x - \xi)^{5/4}} + \delta_{N} n^{5/2} \right] \le c(a, b) \delta_{N} n^{7/2} \le c(a, b) \quad (i = 2, 3, 5, 6), \quad (4.10)$$

$$U_{2j} \le c(a,b)n^{-1} \quad (j=4,7).$$
 (4.11)

Сопоставляя (4.5), (4.9)–(4.11), находим

$$U_2 \le c(a,b) \left[\ln(n+1) + |\hat{p}_{n,N}(x)| \right]. \tag{4.12}$$

Теперь оценим U_3 . В силу (2.7) при $n = O(\delta_N^{-2/7})$ имеем

$$U_{3} \leq \sum_{k=0}^{n} |\hat{p}_{k,N}(x)| \sum_{\tau_{1} \leq x_{j} \leq \tau_{2}} |\hat{p}_{k,N}(x_{j})| \Delta t_{j} \leq$$

$$\leq c(a,b) \sum_{k=0}^{n} |\hat{p}_{k,N}(x)| \sum_{\tau_{1} \leq x_{j} \leq \tau_{2}} (1-x_{j})^{-\frac{1}{4}} \Delta t_{j} \leq$$

$$\leq c(a,b) \sum_{k=0}^{n} |\hat{p}_{k,N}(x)| \frac{\tau_{2} - \tau_{1}}{(1-\tau_{2})^{1/4}} < c(a,b) \frac{1}{\left(1-\frac{1}{n}\sqrt{\frac{1+x}{1-x}}\right)^{\frac{1}{4}}} \leq c(a,b). \quad (4.13)$$

Перейдем к оценке U_4 . В силу (2.1), (4.2) и (4.3) мы находим

$$U_{4} \leq \sum_{\tau_{2} \leq x_{j} < 1} \left| \frac{\hat{p}_{n+1,N}(x)\hat{p}_{n,N}(x_{j}) - \hat{p}_{n,N}(x)\hat{p}_{n+1,N}(x_{j})}{x - x_{j}} \right| \Delta t_{j} \leq$$

$$\leq \sum_{\tau_{2} \leq x_{j} < 1} \left| \frac{\hat{P}_{n+1}(x)\hat{P}_{n}(x_{j}) - \hat{P}_{n}(x)\hat{P}_{n+1}(x_{j})}{x - x_{j}} \right| \Delta t_{j} +$$

$$+ \sum_{\tau_{2} \leq x_{j} < 1} \left| \frac{\hat{P}_{n+1}(x)v_{n,N}(x_{j})}{x - x_{j}} \right| \Delta t_{j} + \sum_{\tau_{2} \leq x_{j} < 1} \left| \frac{\hat{P}_{n}(x_{j})v_{n+1,N}(x)}{x - x_{j}} \right| \Delta t_{j} +$$

$$+ \sum_{\tau_{2} \leq x_{j} < 1} \left| \frac{v_{n+1,N}(x)v_{n,N}(x_{j})}{x - x_{j}} \right| \Delta t_{j} + \sum_{\tau_{2} \leq x_{j} < 1} \left| \frac{\hat{P}_{n}(x)v_{n+1,N}(x_{j})}{x - x_{j}} \right| \Delta t_{j} +$$

$$+ \sum_{\tau_{2} \leq x_{j} < 1} \left| \frac{\hat{P}_{n+1}(x_{j})v_{n,N}(x)}{x - x_{j}} \right| \Delta t_{j} + \sum_{\tau_{2} \leq x_{j} < 1} \left| \frac{v_{n,N}(x)v_{n+1,N}(x_{j})}{x - x_{j}} \right| \Delta t_{j} =$$

$$= U_{41} + U_{42} + U_{43} + U_{44} + U_{45} + U_{46} + U_{47}. \quad (4.14)$$

Рассмотрим U_{42} . Воспользовавшись (2.2) и (3.3), представим U_{42} в виде

$$U_{42} \le c(a,b)\delta_N n^{5/2} (1-x)^{-1/4} \sum_{\tau_2 \le x_j \le \frac{1+x}{2}} \frac{(1-x_j)^{-1/4}}{x_j - x} \Delta t_j + c(a,b)\delta_N n^{5/2} (1-x)^{-1/4} \sum_{\frac{1+x}{2} \le x_j \le 1-n^{-2}} \frac{(1-x_j)^{-1/4}}{x_j - x} \Delta t_j + c(a,b)\delta_N n^{5/2} (1-x)^{-1/4} \sum_{\substack{1-n^{-2} \le x_j \le 1}} \frac{n^{1/2}}{x_j - x} \Delta t_j = U_{42}^{(1)} + U_{42}^{(2)} + U_{42}^{(3)}.$$
 (4.15)

Если $\tau_2 \le x_j \le \frac{1+x}{2}$, то $1-x_j \ge x_j - x$. Следовательно, можем записать

$$U_{42}^{(1)} \le c(a,b)\delta_N n^3 \sum_{\tau_2 \le t_j \le \frac{1+x}{2}} \frac{\Delta t_j}{(x_j - x)^{\frac{5}{4}}} =$$

$$= c(a,b)\delta_N n^3 \sum_{\tau_2 \le x_j \le \frac{1+x}{2}} \frac{\Delta t_j}{(x_{j+1} - x)^{\frac{5}{4}}} \left(\frac{\Delta t_j}{x_j - x} + 1\right)^{\frac{5}{4}}. \quad (4.16)$$

Далее, поскольку для рассматриваемых x_j будет выполняться $\frac{1}{x_j-x} \leq \frac{1}{\tau_2-x}$ и $\delta_N = \max_{0 < j < N-1} \Delta t_j$, получаем

$$\left(\frac{\Delta t_j}{x_j - x} + 1\right)^{5/4} < \left(\frac{\delta_N}{\tau_2 - x} + 1\right)^{5/4} \le \left(\delta_N n^2 + 1\right)^{5/4}.$$

Отсюда и из (4.16) в силу (2.10) при $n = O(\delta_N^{-2/7})$ находим

$$U_{42}^{(1)} \le c(a,b)\delta_N n^3 \sum_{\tau_2 \le x_j \le \frac{1+x}{2}} \frac{\Delta t_j}{(x_{j+1} - x)^{5/4}} \le$$

$$\le c(a,b)\delta_N n^3 \left[\int_{\tau_2}^{\frac{1+x}{2}} \frac{d\tau}{(\tau - x)^{5/4}} + \delta_N n^{5/2} \right] \le c(a,b)\delta_N n^{7/2} \le c(a,b). \quad (4.17)$$

Если же $\frac{1+x}{2} \le x_j$, то $1-x_j \le x_j-x$. Тогда для $U_{42}^{(2)}$ в силу (2.10) имеем

$$U_{42}^{(2)} \le c(a,b)\delta_N n^3 \sum_{\frac{1+x}{2} \le x_j \le 1-n^{-2}} \frac{\Delta t_j}{(1-x_j)^{\frac{5}{4}}} \le$$

$$\le c(a,b)\delta_N n^3 \left[\int_{\frac{1+x}{2}}^{1-n^{-2}} \frac{d\xi}{(1-\xi)^{\frac{5}{4}}} + \delta_N n^{\frac{5}{2}} \right] \le c(a,b). \quad (4.18)$$

Далее, для $U_{42}^{(3)}$ имеет место оценка

$$U_{42}^{(3)} \le c(a,b)\delta_N n^{\frac{7}{2}} \sum_{1-n^{-2} \le x_j < 1} \frac{1}{x_j - x} \Delta t_j \le c(a,b)\delta_N n^{\frac{11}{2}} \sum_{1-n^{-2} \le x_j < 1} \Delta t_j \le c(a,b).$$

$$(4.19)$$

Сопоставляя (4.15)–(4.19), получаем

$$U_{42} \le c(a,b). \tag{4.20}$$

Аналогично доказываются и следующие оценки:

$$U_{4i} \le c(a,b) \quad (i=3,5,6),$$
 (4.21)

$$U_{4j} \le c(a,b)n^{-1} \quad (j=4,7).$$
 (4.22)

Оценим U_{41} . Аналогично тому, как была получена оценка U_{21} , находим

$$\begin{aligned} U_{41} &\leq \frac{2n+1}{2} \sum_{\tau_2 \leq x_j < 1} \left| \frac{(1-x_j) P_n^{1,0}(x_j) P_n(x) - (1-x) P_n^{1,0}(x) P_n(x_j)}{x-x_j} \right| \Delta t_j \leq \\ &\leq c (1-x)^{-\frac{1}{4}} \left[\sum_{\tau_2 \leq x_j \leq 1-n^{-2}} \frac{(1-x_j)^{\frac{1}{4}}}{x_j-x} \Delta t_j + n^{-\frac{1}{2}} \sum_{1-n^{-2} < x_j < 1} \frac{\Delta t_j}{x_j-x} \right] + \end{aligned}$$

$$+ c(1-x)^{\frac{1}{4}} \left[\sum_{\tau_2 \le x_j \le 1 - n^{-2}} \frac{(1-x_j)^{-\frac{1}{4}}}{x_j - x} \Delta t_j + n^{1/2} \sum_{1-n^{-2} \le x_j < 1} \frac{\Delta t_j}{x_j - x} \right] \le$$

$$\le c \left\{ (1-x)^{-1/4} \sum_{\tau_2 \le x_j \le 1 - n^{-2}} \frac{(1-x_j)^{1/4}}{x_j - x} \Delta t_j + \frac{(1-x)^{1/4}}{x_j - x} \Delta t_j + \sum_{1-n^{-2} \le x_j < 1} \frac{\Delta t_j}{x_j - x} + \frac{1}{n^{1/2}} \sum_{1-n^{-2} \le x_j < 1} \frac{\Delta t_j}{x_j - x} \right\} = U_{41}^{(1)} + U_{41}^{(2)} + U_{41}^{(3)} + U_{41}^{(4)}, \quad (4.23)$$

где

$$U_{41}^{(4)} \le cn^{5/2}\delta_N \le cn^{-1}; \tag{4.24}$$

$$U_{41}^{(3)} \le c \left[\int_{1-n^{-2}}^{1} \frac{d\xi}{\xi - x} + \delta_N n^2 \right] \le c \ln(n+1); \tag{4.25}$$

$$U_{41}^{(2)} \le c \sum_{\tau_2 \le x_j \le 1 - n^{-2}} \frac{(1 - x_j)^{-1/4}}{x_j - x} \Delta t_j \le c\delta_N n^2 \le cn^{-3/2}.$$

$$(4.26)$$

Далее, в силу неравенства $(1-x_i)^{1/4} \le (1-x)^{1/4} + (x_i-x)^{1/4}$ и (2.10) получаем

$$U_{41}^{(1)} \le c \left[\sum_{\tau_2 \le x_j \le 1 - n^{-2}} \frac{\Delta t_j}{x_j - x} + (1 - x)^{-1/4} \sum_{\tau_2 \le x_j \le 1 - n^{-2}} \frac{\Delta t_j}{(x_j - x)^{3/4}} \right] \le c \left[\int_{\tau_2}^{1 - n^{-2}} \frac{d\xi}{\xi - x} + \delta_N n^2 + (1 - x)^{-1/4} n^{13/8} \delta_N \right] \le c \ln(n + 1).$$

Отсюда и из (4.23)–(4.26) находим

$$U_{41} \le c \ln(n+1). \tag{4.27}$$

Сопоставляя (4.14), (4.20), (4.21), (4.22) и (4.27), мы выводим

$$U_4 \le c(a,b)\ln(n+1). \tag{4.28}$$

Собираем оценки (4.4), (4.12), (4.13), (4.28) и, сопоставляя их с (4.1), находим

$$L_{n,N}(x) \le c(a,b) \left[\ln(n+1) + |\hat{p}_{n,N}(x)| + |\hat{p}_{n+1,N}(x)| \right],$$
 (4.29)

где $0 \le x \le 1 - 4n^{-2}, \ n = O(\delta_N^{-2/7}).$ Перейдем к случаю, когда $1 - 4n^{-2} \le x \le 1$. Чтобы оценить $L_{n,N}(x)$ при $1 - 4n^{-2} \le x \le 1$, разобьем сумму в правой части равенства (1.5) по следующей схеме:

$$L_{n,N}(x) \leq \sum_{-1 < x_j \leq -1/2} |K_{n,N}(x, x_j)| \Delta t_j + \sum_{-1/2 \leq x_j \leq 1 - n^{-2}} |K_{n,N}(x, x_j)| \Delta t_j + \sum_{1 - n^{-2} < x_i < 1} |K_{n,N}(x, x_j)| \Delta t_j = V_1 + V_2 + V_3. \quad (4.30)$$

Суммы V_1 и V_2 оцениваются совершенно аналогично тому, как это было сделано для $U_1,\,U_2,$ и $U_3.$ В частности, при $n=O(\delta_N^{-2/7})$ имеем

$$V_1 \le c(a,b) \left[|\hat{p}_{n,N}(x)| + |\hat{p}_{n+1,N}(x)| \right], \tag{4.31}$$

$$V_2 \le c(a,b) \left[\ln(n+1) + |\hat{p}_{n,N}(x)| \right]. \tag{4.32}$$

Что касается V_3 , то, воспользовавшись оценкой (2.3), имеем

$$V_{3} = \sum_{1-n^{-2} \le x_{j} < 1} \left| \sum_{k=0}^{n} \hat{p}_{k,N}(x) \hat{p}_{k,N}(x_{j}) \right| \Delta t_{j} \le c(a,b) \sum_{1-n^{-2} \le x_{j} < 1} \left| \sum_{k=0}^{n} k \right| \Delta t_{j} \le c(a,b) n^{2} \sum_{1-n^{-2} \le x_{j} < 1} \Delta t_{j} \le c(a,b). \quad (4.33)$$

Из (4.30)-(4.33) получаем

$$L_{n,N}(x) \le c(a,b) \left[\ln(n+1) + |\hat{p}_{n,N}(x)| + |\hat{p}_{n+1,N}(x)| \right] \quad (1 - 4n^{-2} \le x \le 1). \tag{4.34}$$

Сопоставляя (4.29) и (4.34), убеждаемся в справедливости теоремы в случае, когда $0 \le x \le 1$. Далее, посредством аналогичных рассуждений такую же оценку можно получить и для случая, когда $-1 \le x \le 0$.

Теперь остается рассмотреть вопрос о точности полученной оценки для $L_{n,N}(x)$. Для доказательства воспользуемся аналогичными рассуждениями [15]. Прежде всего, очевидно неравенство

$$L_{n,N}(x) \ge S_{n,N}(1;x) = 1.$$
 (4.35)

Далее, если $T_n(x) = \cos(n\arccos x) = 2^{n-1}x^n + \dots$, то $(n+2 \le N-1)$

$$|S_{n-1,N}(T_{n+2};x)| = \left| S_{n+2,N}(T_{n+2};x) - \sum_{j=0}^{N-1} T_{n+2}(x_j) \hat{p}_{n+2,N}(x_j) \hat{p}_{n+2,N}(x) \Delta t_j - \left\{ \sum_{j=0}^{N-1} T_{n+2}(x_j) \hat{p}_{n+1,N}(x_j) \hat{p}_{n+1,N}(x) \Delta t_j - \sum_{j=0}^{N-1} T_{n+2}(x_j) \hat{p}_{n,N}(x_j) \hat{p}_{n,N}(x) \Delta t_j \right\} \right|.$$

$$(4.36)$$

Так как $|S_{n+2,N}(T_{n+2};x)| = |T_{n+2}(x)| \le 1$ и выполняется (i=n,n+1)

$$\sum_{j=0}^{N-1} |T_{n+2}(x_j)\hat{p}_{i,N}(x_j)| \, \Delta t_j \leq \left(\sum_{j=0}^{N-1} T_{n+2}^2(x_j) \Delta t_j\right)^{1/2} \left(\sum_{j=0}^{N-1} \hat{p}_{i,N}^2(x_j) \Delta t_j\right)^{1/2} \leq 1$$

в силу неравенства Коши—Буняковского, то из (4.36) следует соотношение

$$L_{n,N}(x) \ge \left| 2^{n+1} k_{n+2,N}^{-1} |\hat{p}_{n+2,N}(x)| - |\hat{p}_{n+1,N}(x)| - |\hat{p}_{n,N}(x)| \right| - 1. \tag{4.37}$$

Кроме того, в частности, нетрудно доказать справедливость неравенства

$$U'_{21} = \left| \widehat{P}_n(x) \right| \sum_{-\frac{1}{2} \le x_j \le \tau_1} \frac{(1 - x_j)^{1/4}}{x - x_j} \Delta t_j + \left| (1 - x) \widehat{P}_n^{1,0}(x) \right| \sum_{-\frac{1}{2} \le x_j \le \tau_1} \frac{(1 - x_j)^{-1/4}}{x - x_j} \Delta t_j \ge c \sum_{-\frac{1}{2} \le x_j \le \tau_1} \frac{\Delta t_j}{x - x_j} \ge c \left(1 - \frac{\delta_N}{2} \right) \left[\ln(n+1) - \ln 2 \right]. \quad (4.38)$$

Далее, воспользовавшись следствием 2.2 и заметив, что относительно меры, рассматриваемой в данной работе, старший коэффициент многочлена (1.1) имеет порядок 2^n , с учетом (4.35), (4.38) найдется такая константа c>0, что при всех $x \in [-1,1]$ из (4.37) в результате мы получаем неравенство

$$L_{n,N}(x) \ge c \left[\ln(n+1) + |\hat{p}_{n,N}(x)| + |\hat{p}_{n+1,N}(x)| \right],$$

из которого и следует неулучшаемость по порядку полученной оценки функции Лебега. Теорема 4.1 доказана.

Кроме того, отметим, что из (2.3) при условии $n=O(\delta_N^{-2/7})$ для $\hat{p}_{n,N}(x)$ допустима оценка

$$|\hat{p}_{n,N}(x)| \le c(a,b) \frac{n^{\frac{1}{2}}}{(n\sqrt{1-x^2})^{\frac{1}{2}}+1}.$$

Ясно, что такая же оценка справедлива и для $\hat{p}_{n+1,N}(x)$. Отсюда и из теоремы 4.1 непосредственно вытекает следующее утверждение.

Теорема 4.2. Пусть $f \in C[-1,1], 0 < b < 1, 0 < a \le \left\{\frac{1-b}{2\varpi_2}\right\}^{1/4}, n = O(\delta_N^{-2/7}).$ Тогда справедлива оценка

$$L_{n,N}(x) \le c(a,b) \left(\ln(n+1) + \frac{n^{\frac{1}{2}}}{(n\sqrt{1-x^2})^{\frac{1}{2}} + 1} \right) \quad (-1 \le x \le 1).$$

Литература

- 1. Даугавет И. К., Рафальсон С. З. О некоторых неравенствах для алгебраических многочленов // Вестник Ленингр. ун-та. 1974. № 19. С. 18–24.
 - 2. Сеге Г. Ортогональные многочлены. М.: Физматгиз, 1962. 500 с.
- 3. Rau H. Uber die Lebesgueschen Konstanten der Reihentwicklungen nach Jacobischen // Polynomen. Journ. für Math. 1929. N 161. C. 237–254.
 - 4. Gronwall T. Uber die Laplacische Reihe // Math. Ann. 1913. N 74. S. 213–270.
- 5. Агаханов С. А., Натансон Г. И. Приближение функций суммами Фурье—Якоби // ДАН СССР. 1966. Т. 166, № 1. С. 9–10.
- 6. Агаханов С. А., Натансо
н Г. И. Функция Лебега сумм Фурье—Якоби // Вестник Ленингр. ун-та. 1968. Т. 1. С. 11–23.
- 7. *Шарапудинов И. И.* О сходимости метода наименьших квадратов // Матем. заметки. 1993. Т. 53, № 3. С. 131–143.
- 8. *Нурмагомедов А. А.* Многочлены, ортогональные на неравномерных сетках // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2011. Т. 11. Вып. 3, ч. 2. С. 29–42.

- 9. Нурмагомедов А. А. Сходимость сумм Фурье по многочленам, ортогональным на произвольных сетках // Изв. вузов. Математика. 2012. № 7. С. 60–62.
- $10.\$ *Нурмагомедов А.А.* Об асимптотике многочленов, ортогональных на произвольных сетках // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2008. Т. 8. Вып. 1. С. 25–31
- 11. *Коркмасов Ф. М.* Аппроксимативные свойства средних Валле—Пуссена для дискретных сумм Фурье—Якоби // Сиб. мат. журн. 2004. Т. 45, № 2. С. 334–355.
- 12. Шарапудинов И.И. Смешанные ряды по ортогональным полиномам. Теория и приложения. Махачкала: ДНЦ РАН, 2004. 276 с.
- 13. *Шарапудинов И. И.* Об ограниченности в C[-1,1] средних Валле—Пуссена для дискретных сумм Фурье—Чебышёва // Матем. сб. 1996. Т. 187, № 1. С. 143–160.
- 14. Алексич Γ . Проблемы сходимости ортогональных рядов. М.: Изд-во иностр. лит., 1963. 369 с.
- 15. Бадков В. М. Двусторонние оценки функции Лебега и остатка ряда Фурье по ортогональным многочленам // Сб. Аппроксимация в конкретных и абстрактных банаховых пространствах. АН СССР, Уральск. научн. центр. 1987. С. 31–45.

Статья поступила в редакцию 13 декабря 2017 г.; рекомендована в печать 22 марта 2018 г.

Контактная информация:

Нурмагомедов Алим Алаутдинович — доц., канд. физ.-мат. наук; alimn@mail.ru Расулов Набиюллах Курбангаджиевич — доц., канд. физ.-мат. наук

Double-sided to Lebesgue function of Fourier sums by polynomials orthogonal on non-uniform grids

- A. A. Nurmagomedov, N. K. Rasulov
- M. M. Dzhambulatov Dagestan State Agrarian University,
- ul. M. Gadzhieva, 180, Makhachkala, 367032, Russian Federation

For citation: Nurmagomedov A.A., Rasulov N.K. Double-sided to Lebesgue function of Fourier sums by polynomials orthogonal on non-uniform grids. *Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy*, 2018, vol. 5 (63), issue 3, pp. 417–430. https://doi.org/10.21638/11701/spbu01.2018.306

Let $\Omega = \{t_0, t_1, \ldots, t_N\}$ and $\Omega_N = \{x_0, x_1, \ldots, x_{N-1}\}$, where $x_j = (t_j + t_{j+1})/2$, $j = 0, 1, \ldots, N-1$ are any systems of different points from [-1, 1]. For arbitrary continuous function f(x) on the segment [-1, 1] discrete Fourier sums is constructed by a system of polynomials $\{\hat{p}_{k,N}(x)\}_{k=0}^{N-1}$ forming an orthonormal system on non-uniform system of points Ω_N consisting of a finite number of N points from segment [-1, 1] with weight $\Delta t_j = t_{j+1} - t_j$. We have found an order for Lebesgue function $L_{n,N}(x)$ of the growing discrete Fourier sums $S_{n,N}(f,x)$ for $n = O(\delta_N^{-2/7}), \delta_N = \max_{0 \le j \le N-1} \Delta t_j$. Namely, a double-sided pointwise estimate for Lebesgue function $L_{n,N}(x)$ with is depended from n and position of a point x on the [-1,1] is obtained.

Keywords: polynomial, orthogonal system, set, asymptotic formula, discrete Fourier sums, Lebesgue function.

References

- 1. Daugavet I.K., Rafalson S.Z., "About of some inequalities for algebraic polynomial", Vestn. Leningr. Univ., issue 19, 18–24 (1974).
 - 2. Szegö G., Orthogonal Polynomials (Amer. Math. Soc., 1939; Fizmatgiz, Moscow, 1962).

- 3. Rau H., "Uber die Lebesgueschen Konstanten der Reihenentwicklungen nach Jacobischen Polynomen", J. fur Math. 161, 237–254 (1929).
 - 4. Gronwall T., "Uber die Laplacesche Reihe", Math. Ann. 74(2), 213-270 (1913).
- 5. Agakhanov S. A., Natanson G. I., "Approximation of Functions by Fourier—Jacobi Sums", Sov. Phys. Dokl. 166(1), 9–10 (1966).
- 6. Agakhanov S.A., Natanson G.I., "The Lebesgue Function for Fourier—Jacobi Sums", *Vestn. Leningr. Univ.*, issue 1, 11–13 (1968).
- 7. Sharapudinov I. I., "Convergence of the Least Squares Method", *Matem. Zametki* **53**(3), 131–143 (1993) [in Russian].
- 8. Nurmagomedov A.A., "Polynomials, Orthogonal on Non-Uniform Grids", *Izv. Saratovsk. Univ. Nov. Ser. Matem.*, Mekhan., Informatika 11(3(2)), 29–42 (2011) [in Russian].
- 9. Nurmagomedov A.A., "Convergence of Fourier Sums in Polynomials Orthogonal on Arbitrary Grids", *Iz. VUZ. Matem.* **7**, 60–62 (2012) [in Russian].
- 10. Nurmagomedov A. A., "Asymptotic Properties of Polynomials which are Orthogonal on Arbitrary Grids", *Izv. Saratovsk. Univ. Nov. Ser. Matem.*, *Mekhan.*, *Informatika* 8(1), 25–31 (2008) [in Russian].
- 11. Korkmasov F. M., "Approximate Properties of the de la Vallee e-Poussin Means for the Discrete Fourier—Jacobi Sums", Sib. Matem. Zhurn. 45(2), 334–355 (2004) [in Russian].
- 12. Sharapudinov I.I., Mixed Series by Orthogonal Polynomials (Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala, 2004) [in Russian].
- 13. Sharapudinov I. I., "Boundednes in C[-1,1] of the de la Vallee e-Poussin Means for the discrete Fourier—Jacobi sums", $Matem.\ Sbor.\ 187(1),\ 143-160\ (1996)$ [in Russian].
- 14. Alexits G., Konvergenz probleme der Orthogonalreihen (Veb Deutscher Verlag der Wissenschaften, 1960; Inostr. Lit. Publ., Moscow, 1963).
- 15. Badkov V. M., "Two-Sided Estimations for the Lebesgue Function and the Remainder of the Fourier Series with Respect to Orthogonal Polynomials". In: *Approximation in Concrete and Abstract Banach Spaces*, 31–45 (Akad. Nauk SSSR, Ural'sk. Nauchn. Tsentr, Sverdlovsk, 1987) [in Russian].

Author's information:

 $\begin{array}{lll} Alim \ A. \ Nurmagomedov -- alimn@mail.ru\\ Nabiyullah \ K. \ Rasulov \end{array}$