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The aim of this paper is to characterize the BMO norm via ball Banach function spaces based
on the Rubio de Francia algorithm. The method in this paper can be applicable to the Campanato
spaces. Refs 28.
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1. Introduction. The BMO space is known as the dual space of the Hardy
space H!'(R") and plays an important role in real analysis due to many important
characterizations. The space BMO(R™) consists of all locally integrable functions b
satisfying that the semi-norm

1
Ibllsao = sup —/ b(z) — bo| do
Q:cube ‘Q| Q

is finite, where for each cube @ C R”, |Q)| is the Lebesgue measure, and bg is the mean
value of the function b on @, namely

1
bg = E/Qb(y) dy.

The semi-norm ||b||gmo is called the BMO norm. If 5 € BMO(R™), then there exist positive
constants C; and Cy such that for all cubes Q and A > 0,

Cao
{2 €Q : b(x) - bal > AH < C1 [ Qlexp (—) . (11)
[0l Bmo

The inequality (1.1) is proved by John and Nirenberg [1] and implies that for any constant
1 < p < oo there exists a constant C' > 1 such that

[bllBmo,: < [IbllB7MOL, < CllblBMO, ;1 5 (1.2)
where xq is the characteristic function for @) and
[bllBymo,, = 16 = b@)xqllLern)- (1.3)

sup —————
Q:cube ||XQ||LP([R")
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The aim of this paper is to replace LP(R™) by general function spaces having similar
properties.
We work on ball Banach function spaces, whose definition we present now.

Definition 1.1. [2, Definition 2| Let M be the set of all complex-valued measurable
functions defined on R™. A mapping p : M — [0, 0] is called a ball Banach function norm
if, for all f, g, fx,(k=1,2,3,...), in M, for all constants a > 0 and for all cubes @ in R,
the following properties hold:

(P1) p(f) =0if and only if f =0 a.e.; p(af) = ap(f); p(f +g) < p(f) + p(9);
(P2) If 0 < g < f a.e., then p(g) < p(f);

(P3) If 0 < fi 1 f a.e. then p(fx) T p(f);

(P4) If |Q| < oo, then p(xqg) < oo;

(P5) If f > 0 a.e. and |@Q] < oo, then fQ f(z)dz < Cgop(f) for some constant Cgq,
0 < Cg < o0, depending on @ and p but independent of f.

The definition remains unchanged if we replace “cube” by “ball” in the above. So this
definition deserves this name.
Accrodingly, the space generated by such p is called the ball Banach function space.

Suppose that X is a ball Banach function space equipped with a norm || - ||x. The
associate space X' is defined by

X' ={feM:|flx < oo},
where

= s {| [ sloata) o

By using a similar technique in [3], we see that X’ is a ball Banach function space as well.
We also recall that the Hardy—Littlewood maximal operator M is given by

allx < 1}.

- xq()
M) = sup X2 /Q )] dy.

In this paper we aim to provide a sufficient condition to characterize the BMO norm
in terms of X, X’ and M.

Theorem 1.1. Let X be a ball Banach function space. If the Hardy—Littlewood
mazximal operator M is bounded on the associate space X', then there ewist positive
constants Cy < Cy such that for all b € BMO(R"),

Cilbllsmo < sup ———I[(b = bg)xqllx < C2l/b]BMoO- (1.4)
Q:cube HXQHX
The quantity
[bllBMox = sup ———I[(b—bg)xqllx
Q:cube ||XQ||X

is the X-based generalized BMO, which is one of our targets in this paper. Ho’s proof [4]
is based on the theory of Hardy spaces. We will give another proof of Theorem 1.1 using
the Rubio de Francia algorithm. Our result is based on the following inequalities.
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Theorem 1.2. Let X be a ball Banach function space such that the Hardy— Littlewood
mazximal operator M is bounded on the associate space X'. Then we have

. 1 Y
o7 L i@l < irxalx < € (g [ e az)

for some 1 < p < c0.

Note that (1.4) is a consequence of Theorem 1.2 and (1.2).

Let 6 € (0,1) and 1 < p < oo. As an application of Theorem 1.2, we can characterize
the Campanato space £LP(R") as well. Recall that the Campanato space £P/(R™) is the
set of all f € LY (R™) for which the quantity

loc

1

TP — ( /\f . |pdx)"
- ([R) Q:cube ‘Q' ?

is finite, where £(Q) is the side length of ). We know that there exists a constant cg , such
that

[l cvowny < Nfllzrowny < cpllfllro@ny- (1.5)
This equivalence dates back to the works by Campanato and Meyer (see [5, Theorem,
p.183] and [6, Theorem, p.718]), where both authors showed that these norms are
equivalent to the Lip’ norm. See [7, p. 72] for an account of these facts. See also [8,

Theorem 3.1].
Let X be a ball Banach function space. We consider the quantity:

[ fllzx.0@ny == sup K(Q)_QM_
Q:cube HXQHX

Theorem 1.3. Let 1 < p < o0, § € (0,1) and X be a ball Banach function space.
If the Hardy—Littlewood maxzmal operator M is bounded on the associate space X', then
there exist positive constants C1 < Cy such that for all f € LY9(R™),

Cillfllzxo@ny < [ fllzrowny < Coll fll2x.0(Rn)- (1.6)

Note that (1.6) is a consequence of Theorem 1.2 and (1.5). Also, from the general
pointwise estimate in Theorem 1.2, we learn that a passage to generalized Campanato
spaces and to higher order Campanato spaces are also possible.

We work on ball Banach function spaces instead of Banach function spaces. We recall
the definition of Banach function spaces to explain that Morrey spaces do not fall under
the scope of Banach function spaces.

Definition 1.2. Let X be a linear subspace of M.

1. The space X is said to be a Banach function space if there exists a functional ||| x :
M — [0, 00] satistying the following properties. Let f, g, f; e M (j =1, 2, ---),
then

(a) f € X holds if and only if || f||x < oo;
(b) norm property:
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(i) positivity: [If]1x > 0;
(ii) strict positivity: || f||x = 0 holds if and only if f(z) = 0 for almost every
x € R™;

(iii) homogeneity: | Af|lx = |A| - ||f]|x holds for all complex numbers A;
(iv) triangle inequality: || f + gllx < [ f[[x + [lgllx
(¢) symmetry: [ f[lx = [[[f[l|x;
(d) lattice property: if 0 < g(x) < f(z) for almost every € R™, then ||g||x < || f|lx;

(e) fatou property: if 0 < fj(x) < fj41(x) for all j and f;(z) — f(z) as j — oo for
almost every € R™, then lim || fj||x = | fllx;
j—oo

(f) for every measurable set F' C R™ such that |F| < oo, ||xr|x is finite.
Additionally there exists a constant Cr > 0 depending only on F' such that
forall h e X,

[ In@)ldz < Clhlx.
F

Remark 1.1. In other literatures (for example [9]) the Banach function spaces and
the associate space are called the Kothe space and the Kothe dual respectively.

The usual Lebesgue space LP(R™) with constant exponent 1 < p < oo is an example
of Banach function spaces. However, Morrey spaces are not Banach function spaces in
general. When 1 < ¢ < p < oo, then M? (R™) is a ball Banach function space trivially but
is not a Banach function space [10, Example 3.3]. In [10, Theorem 4.1] the second author

and Tanaka showed that the associate space of the ball Banach space M%(R") is ’Hg,/ (R™),
where ’Hg: (R™) is the block space defined by Zorko [11]. According to [12, Theorem 4.1], the

Hardy—Littlewood maximal operator is bounded on ’H]q”,/ (R™") as long as 1 < ¢ < p < 0.

We organize the remaining part of this paper as follows: In Section 2, we review
preliminary facts on ball Banach function spaces and on the Muckenhoupt weights. We
prove Theorem 1.2 in Section 3. In Section 4, we consider some examples of X together
with related results.

2. Preliminaries. We describe some of fundamental facts of ball Banach function
spaces, whose proof is similar to the one corresponding to Banach function spaces; see
Bennett and Sharpley [3]. For further informations on the theory of Banach function
spaces including the proof of Lemma 2.1 below we refer to the book [3].

Lemma 2.1. Let X be a ball Banach function space. Then the following hold:

1) (The Lorentz—Luxemburg theorem) (X') = X holds, in particular, the norms
Il lxry and || - ||x are equivalent;

2) (The generalized Hélder inequality) If f € X and g € X', then we have

[ 1@l < flxlglx

Under a certain condition on the boundedness of the Hardy—Littlewood maximal
operator M on X, the norm || - || x enjoys properties similar to the Muckenhoupt weights.
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Lemma 2.2. Let X be a ball Banach function space. Suppose that the Hardy—
Littlewood mazimal operator M is weakly bounded on X, that is, there exists a positive
constant C' such that

Ixgarrsayllx <O fllx (2.1)

is true for all f € X and A > 0. Then we have

1
sup @HXQ\IxIIXQIIX/ < 00, (2.2)

Q:cube

PROOF. The proof is similar to the first author’s papers [13, Lemmas 2.4 and 2.5]
and [14, Lemmas G’ and H|. For readers’ convenience we give the self-contained proof.
Take a cube Q and a function f € L{ (R™). Suppose that |f|g > 0. Because |f|gxq(z) <

M(fxq)(x) holds for almost every € R”, we obtain M (fxqg)(z) > A for almost every
x € Q, where X\ :=|f|g/2. Hence by assumption (2.1) we get

Iflalxellx < Iflolixmxgysxalix <Iflg - CA I xellx =2C 1 fxollx.

Therefore we have

1 1
Tau@uu@u/Taumusw{4WMm@Mxmexwmx<@

=sup {lglolxellx = g€ X, llglx <1} <
<sup {2C [lgxellx : 9 € X, [lgllx < 1} <2C.

O

Remark 2.1. If M is bounded on X, that is, there exists a positive constant C' such
that

IMfllx < Clfllx

holds for all f € X, then one can easily check that (2.1) holds. On the other hand, if M
is bounded on the associate space X', then Lemma 2.1 shows that (2.2) is true.

Next, we recall the notion of weights. Let w be a locally integrable and positive
function on R™. The function w is said to be a Muckenhoupt A; weight if there exists a
positive constant C; such that Mw(x) < Crw(x) holds for almost every « € R™. The set
Aj consists of all Muckenhoupt A; weights. For every w € Ay, the finite value

1 _
M&i$m{—/w@MWme@}
Q:cube |Q‘ Q

is said to be a Muckenhoupt A; constant.
We remark that if w € A;, then

for all cubes Q). We will use a classical result on the Muckenhoupt weights.
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Lemma 2.3. [15, Chapter 7; 16, Chapter 9] Let w € A;. We write w(Q) :=
fQ w(z)dx for a cube Q. Then the reverse Holder inequality holds, that is, there exist
positive constants ¢ > 1 and C' depending on n and [w]a, such that for all cubes Q,

Actually, we know that the pair

1
27 +3[w] 4

oo

C=2, g=1+

does the job, where [w]4__ is the smallest number B > 0a for which

wg < Bexp <%|/Qlogw(x) dx)

for every cube Q. Note that [w]a,, < [w]a, for all weights w. This result can be found
in [17, Theorem 2.3]; see [18, Theorem 4.2] for a generalization to spaces of homogeneous

type.
3. Proof of Theorem 1.2.

PrOOF. We first prove the left-hand side inequality. Using Lemma 2.2 and Remark
2.1, we get for all cubes @,

1 1 1

where C' > 0 is a constant independent of f and @. This shows the left-hand side inequality.
Next we prove the right-hand side inequality. Our idea is based on [19, Proof of Lemma
3.3]. Take g € X’ with ||g||x’ < 1. Let B := || M||x/-x’ and define a function

Rota) =3 oo (g€ X, (3.2
k=0
where
] (k=0),
M¥g:= 14 Mg (k=1),
M(M"1g) (k> 2)

For every g € X’ with ||g||x- < 1, the function Rg satisfies the following properties:
1) |g(x)] < Rg(x) for almost every xz € R™;
2) [|Rgllx < 2lgllx <2

3) M(Rg)(xz) < 2BRg(x), that is, Rg is a Muckenhoupt A; weight with the A; constant
less than or equal to 2B.
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By Lemma 2.3, there exist positive constants ¢ > 1 and C independent of g such that for
all cubes @,

(6 /Q Rg(x)qu> " %Ry(@»

By virtue of the generalized Hélder inequality, we obtain

1(R9)X 1oy = Q17 (

S

1/q
= /Q Rg(x)qu) <10/ ry(o) <

Q|
<RI Rg|xlIxellx < C1QI™“VIxql x-

Thus we have

/Q 1 (@)g(@)] do < /Q F@IR(@) dz < | Fxall Lo oy (R Xl oqery <

. V@)
gc(@ /Q @)l dx) Ixellx-

By Lemma 2.1 we get

Ifxellx = IFxallxs < C sup {\ /Q J()g(e) da

g e X' Igllx < 1} <

. LNV
<c(@ /Q @) dm) Ixollx.

Consequently, the right-hand side inequality follows with p = ¢'. O

4. Examples. The authors have considered generalization of the equivalent BMO

norm and proved the following statements.

84

1. (Izuki [20]) The variable Lebesgue norm || f{| ,r)(gny is defined by

p(z)
1l o (mny == inf{)\>0 : / dr < 1}.

Kovécik and Rakosnik [21] have proved that the generalized Lebesgue space LP()(R™)
with variable exponent p(-) is a Banach function space and the associate space is
LPI(‘)([R") with norm equivalence, where p(-) is the conjugate exponent given by
roRszolat

The generalized Lebesgue space LP() (R™) consists of all measurable functions f such
that the norm || f{| Lpc)(gn) is finite.

f(=)

A

By using a bounded measurable function p(-) : R™ — [1,00) we generalize the
semi-norm (1.3) to

1
[bllBMO, () = sup

0= bo)xellLeo) ®n)- (4.1)
Q:cube ||XQHL"(')([R”)
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If p(-) satisfies p— > 1 and the Hardy—Littlewood maximal operator M is bounded
on LPO)(R™), then the generalized BMO norm ||b||gmo is equivalent to the
classical one [|b||mo-

LIJ(')

2. (Tzuki and Sawano [22]) If a bounded measurable function p(-) : R™ — [1, 00) satisfies
1 < inf p(z) and the log-Holder conditions:

C
p(x) —py)| < ———= for z,yeR" |z—y/<1/2
Ip(z) — p(y)| “Tog(z = o] | <1/
P(2) = o] < — S for zeR
p Poo \log(e+\x\) ,

for some constants C' and p., independent of z, y, then ”bHBMOLp(-) is equivalent to
[l BMmo-
3. (Izuki, Sawano and Tsutsui [14]) If a variable exponent p(-) : R™ — [1, 00) is bounded

and M is of weak type (p(),p(+)), that is, there exists a constant C' > 0 such that
for all f € LP()(R™) and all \ > 0,

Ixaersapllnee @y < CATHF Nl Lo gy,

then ||b||smo is equivalent to ||b]|Bmo-

p()

4. (Ho [4]) Ho obtained a characterization in the context of general function space
including Lebesgue spaces. Given a ball Banach function space X equipped with a

norm || - || x, we define the X-based generalized BMO norm
[bllBymoy = sup 7——I|(b = bo)xel x-
Q:cube ||XQ||X

If M is bounded on the associate space X', then ||b||pmoy is equivalent to ||b]|smo-
We remark that Ho’s results [4, 23] have included the authors’ one [22, 24]|. The
statements in [22, 24| are deeply depending on Diening’s work [25] on variable
exponent analysis. On the other hand, Ho’s proof is self-contained and obtained
as a by-product of the new results about atomic decomposition introduced in [4].
Our proof of the result, initially proved by Ho, is new in the sense that we use the
Rubio de Francia algorithm [26-28].

* * *
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