О ВЛИЯНИИ МНОГОКВАНТОВЫХ ОБМЕНОВ НА ГАЗОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ В РЕЛАКСАЦИОННОЙ ЗОНЕ ЗА УДАРНОЙ ВОЛНОЙ*

Л. Д. Мишин, Е. В. Кустова

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9

В данной работе изучается влияние многоквантовых VT-переходов на параметры течения газа в релаксационной зоне ударной волны. Численно решается система уравнений поуровневой колебательно-химической кинетики и газодинамики, записанная в нулевом приближении метода Энскога—Чепмена. Коэффициенты скорости VT-переходов вычисляются на основании результатов траекторных расчетов Биллинга. Получены распределения гидродинамических переменных для смеси N и N_2 с колебательной релаксацией и диссоциацией при различных условиях в набегающем потоке. Отмечается существенное влияние многоквантовых обменов на заселенности колебательных уровней и молярную долю атомов вблизи фронта ударной волны. При учете только одноквантовых обменов максимальная ошибка вычисления температуры составляет 10–12%, для скорости — не превышает 6–8%. Библиогр. 7 назв. Ил. 5.

Ключевые слова: неравновесная кинетика, многоквантовые переходы, поуровневое приближение, ударная волна, диссоциация.

1. Введение. Расчет течения за фронтом ударной волны в гиперзвуковом потоке разреженного газа является важной задачей при конструировании летательных аппаратов и выборе материала для их тепловой защиты, моделировании входа спускаемого аппарата в верхние слои атмосферы. В условиях сильных отклонений от равновесия наиболее точным является детальное поуровневое описание колебательнохимической кинетики [1], при котором макропараметрами потока являются заселенности каждого колебательного уровня молекулярных компонентов, числовые плотности атомов, скорость и температура. Задача о течении газа за фронтом прямой ударной волны в такой постановке решалась ранее в предположении слабого влияния многоквантовых обменов на параметры течения [1–3]. Однако при высоких температурах вероятности многоквантовых обменов достаточно велики, в связи с чем их вклад в релаксационные члены может оказаться существенным. Целью данной работы является исследование влияния многоквантовых VT-переходов колебательной энергии в поступательную на газодинамические параметры течения за сильной ударной волной при различных начальных условиях.

2. Постановка задачи. Рассматривается диссоциирующий азот, колебательный спектр молекул моделируется ангармоническим осциллятором Морзе. Динамика и кинетика газа описывается системой уравнений поуровневой кинетики, полученных в нулевом приближении метода Энскога—Чепмена [1]. Используется модель диссоциации Тринора—Маррона [4], обобщенная для поуровневого приближения [1], а также аналитические аппроксимации траекторных расчетов Биллинга [5] для коэффициентов скорости VT-обмена. Для расчетов параметров непосредственно за фронтом ударной волны используются соотношения Рэнкина—Гюгонио, записанные при условии замороженных химических реакций и обменов колебательной энергией во фронте ударной волны.

^{*}Работа выполнена при поддержке СПбГУ (проект 6.37.163.2014) и РФФИ (проект 15-08-03371).

[©] Санкт-Петербургский государственный университет, 2016

Для описания течения газа за ударной волной решается система уравнений колебательно-химической кинетики в одномерной стационарной постановке [1]

$$\frac{d(vn_i)}{dx} = R_i^{VT} + R_i^{diss-rec}, \qquad i = 0, \dots, L,$$
(1)

$$\frac{d(vn_a)}{dx} = -2\sum_i R_i^{diss-rec} \tag{2}$$

с учетом условий динамической совместности

$$\rho_0 v_0 = \rho v, \tag{3}$$

$$\rho_0 v_0^2 + p_0 = \rho v^2 + p, \tag{4}$$

$$h + \frac{v^2}{2} = h_0 + \frac{v_0^2}{2}.$$
(5)

Здесь v — скорость, ρ — плотность, p — давление, n_i — заселенность *i*-го колебательного уровня, L — число колебательных уровней, n_a — числовая плотность атомов, h энтальпия единицы массы, R_i^{VT} — скорость VT-обменов, $R_i^{diss-rec}$ — скорость диссоциации и рекомбинации; индекс 0 соответствует параметрам газа до ударной волны. Поскольку влияние VV-обменов колебательной энергией на динамику газа за ударной волной мало, в уравнении (1) VV-переходы не учитываются.

Скорости VT-переходов и диссоциации можно выразить по формулам

$$R_i^{VT} = \sum_d n_d \sum_{i' \neq i} \left(k_{i'i}^d n_{i'} - k_{ii'}^d n_i \right), \tag{6}$$

$$R_{i}^{diss-rec} = \sum_{d=a,m} n_{d} (k_{rec,i}^{d} n_{a}^{2} - k_{i,diss}^{d} n_{i}),$$
(7)

где d-химический сорт партнера по столкновению (индексыm,aсоответствуют молекулам и атомам), $k^d_{ii'}$ — поуровневые коэффициенты скоростиVT-переходов, $k^d_{diss,i},k^d_{rec,i}$ — коэффициенты скорости диссоциации и рекомбинации. Рассмотрим коэффициенты скорости VT-переходов при столкновении с молекулой и атомом:

$$N_2(i) + N_2 \rightarrow N_2(i-1) + N_2,$$

 $N_2(i) + N \rightarrow N_2(i') + N.$

Выражения для коэффициентов скорости данных переходов можно найти в работе [6], они являются аппроксимацией траекторных расчетов Биллинга [5].

Для столкновений молекула—молекула имеем

$$k_{i,i-1}^{N_2} = ik_{10}^{N_2} e^{\delta_{VT}(i-1)},$$
 где
 $k_{10}^{N_2} = \exp\left[-3.24093 - 140,69597/T^{0,2}
ight],$
 $\delta_{VT} = 0.26679 - 6.99237 \cdot 10^{-5}T + 4.70073 \cdot 10^{-9}T^2.$

Здесь T — температура газа, коэффициенты имеют размерность см³·c⁻¹.

В случае столкновения молекулы с атомом согласно работе [5] необходимо учитывать многоквантовые переходы (|i'-i| > 1):

$$k_{i,i'}^N = \exp\left[b_0 + b_1(i-i') + b_2(i-i')^2 + i\left(c_0 + c_1(i-i') + c_2(i-i')^2\right)\right], \quad i > i',$$

константы b_i , c_i приведены в [1].

Вестник СПбГУ. Сер. 1. Математика. Механика. Астрономия. Т. 3 (61). 2016. Вып. 2 301

Наряду с рассматриваемой моделью также существует ряд других моделей, учитывающих многоквантовые обмены, например, модель нагруженного гармонического осциллятора FHO [7]. Вероятности многоквантовых обменов, рассчитанные по модели FHO и по аппроксимациям результатов Биллинга, имеют близкие значения. Поэтому в настоящей работе используется более простая модель Биллинга.

3. Сравнение коэффициентов скорости VT-обменов $k_{i,j}^N$. Рассмотрим зависимость коэффициентов скорости одноквантовых и многоквантовых VT-обменов от температуры. На рис. 1 приводится зависимость коэффициентов скорости VT-обменов от температуры для различных колебательных уровней.

Puc. 1.Зависимость коэффициентов скорост
и $VT{\mbox{-}oбменов}$ от температуры для различных колебательных уровней.

Из приведенных графиков видно, что при переходе с одного и того же энергетического уровня коэффициенты для многоквантовых обменов на несколько порядков меньше коэффициентов для одноквантовых обменов. Но если сравнивать переходы с различных уровней, видно, что коэффициенты для многоквантовых обменов могут быть сравнимы с коэффициентами для одноквантовых обменов с более низкого уровня. Поэтому суммарный вклад различных многоквантовых обменов в релаксационные члены (6) может оказаться значительным. Проверим это утверждение для случая течения за ударной волной.

4. Результаты расчетов. Были проведены расчеты газодинамических параметров в релаксационной зоне за ударной волной. При расчетах рассматривались различные начальные условия перед фронтом ударной волны, варьировались начальные скорость и давление. Также учитывалось различное количество возможных много-квантовых обменов. Были получены результаты с учетом:

— только одноквантовых обменов $\Delta i = |i - i'| = 1$ (1q),

— многоквантовых обменов с $\Delta i \leq 20$ (20q),

— многоквантовых обменов с $\Delta i \leq 40$ (40q).

Первым был рассмотрен случай умеренной интенсивности ударной волны: $p_0 = 100$ Па, начальная скорость соответствует числу Маха $M_0 = 10$, $T_0 = 293$ К. Колебательное распределение в набегающем потоке предполагалось больцмановским с температурой T_0 , число атомов n_{a0} равно нулю. Анализ результатов показал, что при таких начальных условиях многоквантовые переходы практически не влияют на газодинамические параметры, отличие результатов не превосходит десятых долей процента.

Рис. 2. Зависимость безразмерной заселенности колебательных уровней i = 1, 20, 46 от x (слева); отклонение результатов от значений, полученных при $|\Delta i| \leq 40$ (справа).

Рассмотрим ударную волну большей интенсивности при $M_0 = 15$, $p_0 = 100$ Па, $T_0 = 293$ К. На рис. 2 (левый столбец) приведены заселенности колебательных уровней i = 1, 20, 45 как функции расстояния x от фронта ударной волны. На графиках в правом столбце приводится отклонение результатов от значений, полученных в пред-

Рис. 3. Зависимость молярной доли атомов, температуры и скорости от x (слева); отклонение результатов от значений, полученных при $|\Delta i| \leq 40$ (справа).

Рис. 4. Зависимость безразмерной заселенности колебательных уровней i = 1, 20, 40 от x (слева); отклонение результатов от значений, полученных при $|\Delta i| \leq 40$ (справа).

305

Рис. 5. Зависимость молярной доли атомов, температуры и скорости от x (слева); отклонение результатов от значений, полученных при $|\Delta i| \leq 40$ (справа).

положении $\Delta i \leq 40$,

$$\frac{\Delta n_i}{n} = \frac{|n_i - n_i(\Delta i \le 40)|}{n_i(\Delta i \le 40)} \cdot 100\%.$$

Из рисунка видно, что отклонение от наиболее точных расчетов для нижних уровней невелико (в пределах 4–5%), а для верхних уровней становится существенным. При этом для последнего уровня отклонение меняет знак, что, видимо, связано с влиянием диссоциации, которая идет более эффективно при учете многоквантовых обменов.

На рис. 3 (левый столбец) приведены молярная доля свободных атомов, температура и скорость как функции x. Приводится отклонение результатов от полученных при $\Delta i \leq 40$. Как видно из графиков, учет многоквантовых переходов существенно меняет значения газодинамических величин и длину релаксационной зоны. Наибольшее различие наблюдается для случаев $\Delta i = 1$ и $\Delta i \leq 40$. Следует отметить, что влияние многоквантовых обменов на скорость и температуру заметно меньше, чем на заселенности и концентрации атомов. Так, отклонение значений скорости и температуры для $\Delta i \leq 20$ от соответствующих значений при $\Delta i \leq 40$ не превосходит 2–3%. Таким образом, учет первых 20 многоквантовых обменов дает удовлетворительную точность расчета v, ρ , T и при этом заметно экономит вычислительные ресурсы.

Рассмотрим случай $M_0 = 18$, $p_0 = 100$ Па, $T_0 = 293$ К, соответствующий максимальной интенсивности ударной волны. На рис. 4, 5 приведены заселенности различных колебательных уровней, молярная доля свободных атомов, температура и скорость как функции x. Также приводится отклонение результатов от полученных при $\Delta i \leq 40$. В целом на графиках видим ту же картину, что и в предыдущем случае наибольшее расхождение результатов для заселенностей средних и высших уровней и расхождение в пределах 2–3% при $\Delta i \leq 20$ и $\Delta i \leq 40$ для других газодинамических переменных. При других начальных значениях давления ($p_0 = 1000$ Па, $p_0 = 2$ Па) характер отклонений остается тем же, но меняется ширина релаксационной зоны.

5. Выводы. Показано, что суммарное влияние большого количества многоквантовых обменов вносит существенные изменения в величины газодинамических параметров в релаксационной зоне ударной волны, а также существенно сокращает длину этой зоны. Из результатов видно, что для расчета таких параметров как скорость, температура, давление, плотность, плотность свободных атомов и заселенности нижних колебательных уровней достаточно учитывать первые 20 многоквантовых обменов, а при расчете заселенностей средних и высших уровней приходится учитывать практически все возможные обмены.

Полученные результаты можно применять для исследования высокотемпературных неравновесных течений, например, при расчете входа спускаемого аппарата в атмосферу Земли.

Литература

1. *Нагнибеда Е. А., Кустова Е. В.* Кинетическая теория процессов переноса и релаксации в потоках неравновесных реагирующих газов. СПб.: Изд-во С.-Петерб. ун-та, 2003. 272 с.

2. Кунова О. В., Нагнибеда Е. А. О влиянии моделей обменных химических реакций на параметры течения воздуха за сильными ударными волнами // Вестн. С.-Петерб. ун-та. Серия 1. 2014. Т. 1(59). Вып. 1. С. 124–133.

3. Kunova O., Nagnibeda E. State-to-state description of reacting air flows behind shock waves // Chemical Physics. 2014. Vol. 441. P. 66–76.

4. Marrone P. V., Treanor C. E. Chemical relaxation with preferential dissociation from excited vibration levels // Phys. Fluids. 1963. Vol. 6, N 9. P. 1215–1221.

Вестник СПбГУ. Сер. 1. Математика. Механика. Астрономия. Т. 3 (61). 2016. Вып. 2 307

5. Billing G. D., Fisher E. R. VV- and VT-rate coefficients in N_2 by a quantum-classical model // Chem. Phys. 1979. Vol. 43. P. 395–401.

6. Capitelli M., Armenise I., Gorse C. State-to-state approach in the kinetics of air components under re-entry conditions // J. Thermophys. Heat Transfer. 1997. Vol. 11, N 4. P. 570–578.

7. Adamovich I. V., Macheret S. O., Rich J. W., Treanor C. E. Vibrational Energy Transfer Rates Using a Forced Harmonic Oscillator Model // J. Thermophys. Heat Transfer. 1998. Vol. 12, N1. P. 57–65.

Статья поступила в редакцию 26 сентября 2015 г.

Сведения об авторах

Мишин Лев Дмитриевич — студент; leomichine@gmail.com

Кустова Елена Владимировна — доктор физико-математических наук, профессор; e.kustova@spbu.ru

ON THE INFLUENCE OF MULTI-QUANTUM TRANSITIONS ON GAS-DYNAMIC PARAMETERS IN THE RELAXATION ZONE BEHIND SHOCK WAVES

Lev D. Mishin, Elena V. Kustova

St. Petersburg State University, Universitetskaya nab., 7-9, St. Petersburg, 199034, Russian Federation; leomichine@gmail.com, e.kustova@spbu.ru

In this paper the influence of multi-quantum VT-exchanges on gas flow parameters in the relaxation zone behind a shock wave is studied. The set of equations of state-to-state vibrational-chemical kinetics coupled to the gas-dynamic equations is simulated numerically in the zero-order approximation of the Chapman– Enskog method. Rate coefficients of VT-transitions are calculated on the basis of Billing's trajectory calculations. Distributions of fluid dynamic variables are obtained for the binary mixture N and N_2 under various free stream conditions. Significant effect of multi-quantum transitions on the vibrational level populations and atom molar fractions is shown. The maximum error in temperature values calculated taking into account only single-quantum transitions is within 10–12%, and does not exceed 6–8% for the velocity. Refs 7. Figs 5.

Keywords: non-equilibrium kinetics, multi-quantum transitions, state-to-state approach, shock wave, dissociation.

References

1. Nagnibeda E.A., Kustova E.V., *Kinetic theory of transport and relaxation processes in non-equilibrium reacting gas flows* (Saint Petersburg, Saint Petersburg University Press, 2003, 272 p.) [in Russian].

2. Kunova O.V., Nagnibeda E.A., "On the influence of exchange chemical reaction models on the parameters of air flows behind strong shock waves", *Vestnik St.Petersburg Univ. Ser.* 1 1(59), Issue 1, 124–133 (2014) [in Russian].

3. Kunova O., Nagnibeda E., "State-to-state description of reacting air flows behind shock waves", *Chemical Physics* **441**, 66–76 (2014).

4. Marrone P. V., Treanor C. E., "Chemical relaxation with preferential dissociation from excited vibration levels", *Phys. Fluids* **6**(9), 1215–1221 (1963).

5. Billing G. D., Fisher E. R., "VV- and VT-rate coefficients in N_2 by a quantum-classical model", *Chem. Phys.* **43**, 395–401 (1979).

6. Capitelli M., Armenise I., Gorse C., "State-to-state approach in the kinetics of air components under re-entry conditions", J. Thermophys. Heat Transfer **11**(4), 570–578 (1997).

7. Adamovich I. V., Macheret S. O., Rich J. W., Treanor C. E. "Vibrational Energy Transfer Rates Using a Forced Harmonic Oscillator Model", J. Thermophys. Heat Transfer **12**(1), 57–65 (1998).