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For an arbitrary local field K (a finite extension of the field Q) and an arbitrary formal group
law F' over K, we consider an analog cg of the classical Hilbert pairing. A theorem by S. V. Vostokov
and I. B. Fesenko says that if the pairing cr has a certain fundamental symbol property for all
Lubin—Tate formal groups, then cr = 0. We generalize the theorem of Vostokov—Fesenko to a wider
class of formal groups. Our first result concerns formal groups that are defined over the ring Ok of
integers of K and have a fixed ring Og of endomorphisms, where Og is a subring of Ok . We prove
that if the symbol ¢ has the above-mentioned symbol property, then c¢p = 0. Our second result
strengthens the first one in the case of Honda formal groups. The paper consists of three sections.
After a short introduction in Sec. 1, we recall basic definitions and facts concerning formal group
laws in Sec. 2. In Sec. 3, we state and prove two main results of the paper (Theorems 1 and 2).
Refs 8.
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1. Introduction. Historically, local fields were introduced by Hensel to solve
problems in number theory by methods borrowed from analysis. Recently, the theory
of local fields has found successful applications in diverse areas ranging from non-
commutative geometry and coding theory to the study of mesoscopic and nano systems
(see, e. g., numerous articles published by A. Khrennikov relating p-adic analysis to various
branches of physics, biology, neural networks, etc.). The present paper is devoted to some
classical aspects of the theory of local fields. Let K be a local field, i. e., a finite extension of
the field Q, of p-adic numbers, and let n be a positive integer. We assume that K contains
the group pu,, of all nth roots of 1. It is well known (see, e.g., [1]) that the Hilbert norm
residue symbol is a non-degenerate bilinear pairing K* x K* — u, such that

(a,1—a)=1 forall a € K*, a # 1, (1)

and every non-degenerate pairing K* x K* — pu, satisfying relation (1) is a power of the
Hilbert symbol. Moreover, for non-degenerate pairings, relation (1) is equivalent to the
norm property of the Hilbert symbol. Using the reciprocity map of local class field theory,
one can define an analog cp of the Hilbert symbol for formal groups over local fields as
in [2]. Let G1,,(X,Y) be the multiplicative formal group. In this case, the norm residue
symbol gives rise to the Hilbert pairing g, on K* x ém(M ) with values in

ppr —1={0—1]0€ ppn},

where M is the maximal ideal of the ring of integers O of K, and relation (1) is equivalent
to
ca (a,—a) =0 for all a € M.
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Based on the example of the formal group ém, one might be tempted to guess (as
was done by S. Lang in his book [3]) that the property

crp(a,—a)=0forall « € M (2)

remains valid for every formal group F' or at least for all formal groups from a certain
class. However, S. Vostokov and I. Fesenko proved in [4] that if ¢y satisfies property (2) for
all Lubin—Tate formal groups F, then ¢p = 0. More precisely, they proved the following
statement.

Proposition. Let L be a field obtained by adjoining the roots k,, of the isogeny [r"] to
K, where 7 is a prime of K. Let cp : L* X F(ML) — K, be a symbol, where My, is the
mazimal ideal of the ring of integers of L. If cp satisfies property (2) for all o € My, and
all Lubin-Tate formal groups, then cp(a,B) =0 for all « € L* and B € F(Mp).

In the present paper, we prove two new results. First, we generalize the Vostokov—
Fesenko theorem to some other class of formal groups (Theorem 1). Secondly, we show
that, in the case of Honda formal groups, Theorem 1 can be strengthened (Theorem 2).

2. Formal groups. 2.1. Definition and basic properties. We recall some basic
definitions and facts concerning formal group laws (for more details, see, e. g., [5, 6]). Let R
be a commutative associative ring with identity element. A one-dimensional formal group
law over R (or, simply a formal group) is a formal power series in R[[X, Y]] satisfying the
following conditions:

a) F(X,F(Y,2)) = F(F(X,Y), Z);

b) F(X,0)=X, F(0,Y)=Y.

It can easily be proved that if F(X,Y) is a formal group law over a ring R, then
F(X,Y) = X +Y (mod deg2). Moreover, there exists a formal series i(X) in R[[X]]
such that F(X,i(X)) = 0 and F(i(X),X) = 0. It is well known that if R does not
have nonzero elements that are Z-torsion and nilpotent, then F(X,Y") is commutative,
i.e., satisfies the relation F(X,Y) = F(Y, X). The standard examples of formal groups
are Go(X,Y) = X +Y and Gu(X,Y) = X +Y + XY, called the additive and the
multiplicative group law, respectively. Let F'(X,Y) and G(X,Y) be formal group laws over
R. A homomorphism f : F — G from F(X,Y) to G(X,Y) is a formal series f(X) € R[[X]]
such that f(0) = 0 and f(F(X,Y)) = G(f(X), f(Y)). A homomorphism f is called an
isomorphism if it has an inverse, i. e., if there exists a homomorphism ¢ : G — F such that
fg(X)) = g(f(X)) = X. A homomorphism f is an isomorphism if and only if f'(0) is
invertible in R. An isomorphism f is called strict if f/(0) = 1. Homomorphisms from F' to
itself are called endomorphisms. We denote by Hom(F, G) the set of all homomorphisms
from F to G and by End(F’) the set of all endomorphisms of F.

For each F, there is a unique ring homomorphism from Z to Endgr(F). We denote
by [n]r(T) the image of n € Z in Endgr(F). Thus, [1]p(X) = X, [-1]F = iF, [n]r(X) =
F(X,[n —1]p(X)), and [-n]p(X) = ip([n](X)). It is easy to check by induction that
[n]p(X) = nX mod deg2. It follows that [n|p is an isomorphism if and only if n is
invertible in R.

For f,g € Hom(F,G), we define the sum (¢ +¢ v) by the relation (¢ +¢ ¥)(X) =
G(e(X),v(X)). If G is commutative, then Hom(F,G) is an Abelian group. If we define
the multiplication in End(F’) as the composition of endomorphisms, then End(F') becomes
a ring with 1.
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For a commutative group law F' over R, we have a homomorphism ¢ : End(F) — R
that sends each f € End(F) to f/(0). Let R be of characteristic 0. Then c is an embedding,.
If a € ¢(End(F)), then we put [a]r = ¢ !(a). Let C be a subring of R such that C' C
¢(End(F)). Then each element a € C' gives rise to an endomorphism of F'. In this case, we
say that the formal group F' has a structure of a formal C-module. If formal group laws
F and G are formal C-modules and f € Hom(F,G), then f([a]r) = [a]c(f) for all a € C.

Let R be a localization of R with respect to the set of positive integers.
A homomorphism from F' to G, is called a logarithm of F. Every logarithm of F' has

the form alp, where a € R and
X
I — / dr
£ ] Fx(0,T)
0

We have F(X,Y) = I (Ip(X) + 1r(Y)).

If R has a prime characteristic p, then every nonzero endomorphism f of F' has the
form f(X) = fl(Xph), where h is a nonnegative integer and f](0) # 0. The number h
is called the height of f. The height of the zero endomorphism is, by definition, co. The
height of the endomorphism [p]g is called the height of the formal group law F'.

Let B be a local commutative R-algebra, let M be the maximal ideal of B, and let B
be complete with respect to the M-topology. For each formal group law F(X,Y) over R,
the power series F(X,Y) and i(X) converge for all XY € M. We turn M into a group
F(M) by putting  +ry = F(z,y) and —p(z) = ip(x) and call the group thus obtained
the group of points of F' over M. The same construction gives rise to a group structure
on an arbitrary power M™ of M. We call the resulting group the group of points of F’
over M™. If F has a structure of a formal C-module, then the Abelian group F(M) has a
structure of a C-module.

Let K be a discrete valuation field of characteristic 0 with ring of integers R = Ok
and residue field k of characteristic p > 0. For every formal group law F over Ok, we
have Z,, C ¢(End(F)), and so F has a formal Z,-module structure. If 7 is a prime element
of O, then by the height of F' we mean the height of the endomorphism [r] reduced
modulo 7.

For a finite extension L/K of local fields and the maximal ideal My, of L, we have the
group F(My). In the case of an infinite extension E/K, by F(Mg) we mean the direct
limit of F(M},) over the system of finite subextensions L/K of E/K. For a fixed algebraic
closure K of K, we denote by M the maximal ideal of the ring of integers in K and by
F(M) the corresponding group. We say that an endomorphism of a formal group F over
Og is an isogeny if the corresponding group homomorphism is onto and has a finite kernel.
It can be proved that an endomorphism f is an isogeny if and only if the height of f is
finite. In this case the kernel of f has order p". Let f be an isogeny, and let f(™ be the
n-fold composition of f with itself. Let x, ¢ be the kernel of f ("), This is a finite subgroup
of F(M).

2.2. Symbols on formal groups. Let K be a local field. We recall that if K
has characteristic zero, then there is an embedding ¢ : End(F) — Og that sends each
f € End(F) to f'(0). We denote by Og the image of End(F') in R. Let Ky be the field of
fractions of Og. We consider an algebraic closure Ky of K¢ and the group F(M) of points
of F over M, where M is the maximal ideal of the ring of integers in K.

Let B be a topological Op-module in which the addition and the action of the elements
of Oy is induced by the formal group F. A symbol on F(M) is, by definition, a continuous

Becmwux CII6I'Y. Cep. 1. Mamemamuxa. Mexanurxa. Acmponomusn. T.3(61). 2016. Bwn. 1 61



bilinear pairing B _
cr: K x F(M) — B.

By bilinearity of ¢z, we mean that the following conditions are valid:

cr(arae, B) = cp(ai, B) +r cr(a2, B),
cr(a, b1+ B2) = cr(a, B1) +F cr(a, B2),
cr(a,[a]B) = [a]er(a, B),

where a,ay,as € K§, 8,B1,82 € F(M), and a € Op. In a more general case, where
we consider an entire class ® of formal groups with the same group of points, the latter
property assumes the following form:

CG(O&, ¢(ﬁ)) = ¢(CF(Q, 6))
for all F,G € ® and every homomorphism ¢ : F' — G.

3. Main results. In this section, we prove two theorems concerning the symbols
satisfying condition (2). Let K be a local field and Ok be the ring of integers of K. Let
L be an extension of K containing the kernel &,, of the isogeny [n{}], where ¢ is a prime
element of the ring Oy. We denote by My the maximal ideal of the ring of integers of L.

Theorem 1. If a symbol cp : L* x F(ML) — Ky satisfies the relation cp(o, —a) = 0
for every formal group F over Ok such that End(F) ~ Oy and for all o € My, then
cr(a, B) =0 for all o« € L* and 8 € F(M,).

ProoF. We fix a formal group F satisfying the conditions of Theorem 1. Let ¢(X) =
X 4+ asX?+ -+ be a series with coefficients in Ox. We prove that there exists a formal
group G(X,Y) € Ok[X,Y] such that the series ¢(X) is a homomorphism from G to F' and
End(G) ~ Op. To this end, it is necessary to prove that there exists a G(X,Y) € K[[X,Y]]
such that

(G(X,Y)) = F(¢(X), 6(Y)).

We let
G(X,Y)=¢"oFod,

where ¢! is the inverse to ¢ with respect to the composition, and prove that G(X,Y) is
a required formal group. First, we prove that G(X,Y) is a formal group. We have

G(X,0) = ¢~ H(F(4(X),0) = ¢~ (#(X)) = X.
Similarly, G(0,Y) =Y. Finally,

G(X,G(Y,2)) = ¢~ (F(¢(X), 9(G(Y, 2))) = ¢~ (F(6(X), F((Y), $(2)))) =
= ¢ (F((0(X), F(9(Y)), 6(2))) = ¢~ (F (¢(G(X»Y)),¢(Z)))=G(G(X»Y)»Z)-

)
It remains to check the relation End(G) ~ Oy. However, this is obvious due to the fact
that the homomorphism v(a) = ¢! o a o ¢ yields an isomorphism End(F) ~ End(G) of
endomorphism rings.
From what have just been proved, it follows that the relation

cr(a,d(—a)) =0
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is valid for all ¢(X) € Og[[X]]. Now we observe that ¢(0,8) = 0 if 6 € p,y—1, where ¢
is the number of elements in the residue field of K. This follows from the bilinearity of
the symbol and the fact that the order of B is prime to ¢ — 1. Let 7w be a prime in Oyp.
Obviously, c¢g(m, —07) = 0 is valid for every formal group G satisfying the conditions of
Theorem 1. Consequently, cp(m, ¢(—67)) = 0. For each 8 € F(Mp) \ F(M3?), there is a
series ¢(X) € Ok [[X]] and 0 € py—1 such that

o(~0m) = 5.

Thus, we obtain that cp(m, 8) = 0 for all B € F(Mp)\ F(M?). We see that if 8 € F(M?),
then 8 +p (—7) = 8’ € F(Mp) \ F(M?). Therefore,

CF(ﬂ-vﬂ/) = CF(ﬂ-vﬂ) +F CF(Trv 77{) = 07

which implies that cp(w, 8) = 0 for all 8 € F (M) and for all prime elements 7 of the ring
of integers. It only remains to observe that the multiplicative group of a field is generated
by its prime elements. This completes the proof of Theorem 1. B

The condition imposed on the symbol in Theorem 1 is very strong. Namely, we
assumed that property (2) is valid for all formal groups from a certain class of groups.
Theorem 2, which is stated and proved below, establishes the degeneration of any symbol
satisfying condition (2) for an individual formal group of certain type, namely, for a Honda
formal group (for the definition of Honda groups, see [7, §]).

Theorem 2. Let K be a local field, let O be the ring of integers in K with maximal ideal
Mg. Let E be a subfield of K such that K/E is an unramified extension of local fields,
and let Og be the ring of integers of E. Let F € Ok|[[X,Y]] be a formal group such that
End(F) ~ Og. Let 7 be a prime element of E, and let the height of [w] be equal to 1. Let
Kn be the kernel of [1"], let L = K(ky,), and let My, be the mazimal ideal of the ring of
integers in L. Finally, let cp : L* x My, — Ky, be a symbol such that cp(a, —a) = 0 for all
a € My, Then cp(a,8) =0 for all « € L* and all § € My,.

We need several lemmas.
Lemma 1. Under the conditions of Theorem 2, the extension L/K is totally ramified.

PROOF. For each s,1 < s < n, let k5 be the kernel of [7%], and let K be the field obtained
by adjoining ks to K. First, we show that the extension K;/K is totally ramified. It is
sufficient to prove that each element a € k; is a root of some Eisenstein polynomial. We
observe that a is a root of

[TF](X):WX+CL2X2+'~'+(LPXP+....

We see that the coefficients of [7](X) belong to Ok. Since the height of [r] is equal to 1,
we have a; € Mg for i <p—1 and a, € Mk (7 is a prime in E; but K/F is unramified,
consequently, 7 is a prime in K'). By the Weierstrass preparation theorem, we have

[7](X) = (co+ -+ cpo1 XPTH+ XP)(bo + i X +---), (3)

where b;,¢; € Ok and by is invertible. We may slightly change Eq. (3) by assuming that
bp = 1. Then the roots of [r] are roots of the first factor in (3). Consequently, it remains
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to prove that this factor is an Eisenstein polynomial, which is easy. Indeed, Eq. (3) with
bo = 1 and the fact that a; € Mg for i <p—1and ap, € Mg imply that ¢c; =7, ¢; € Mg
fori <p—1,and ¢, € M. Thus, each element of ; is a root of an Eisenstein polynomial.
Therefore, the extension K;/K is totally ramified. Now, we prove by induction that the
extension K,,/K is totally ramified. We remark that k3 C ko C -+ C Kk, and prove that
for each s, 1 < s < n, the extension K /K;_ is totally ramified. For this, we must prove
that each element of K\ K,_; is a root of an Eisenstein polynomial. Since

[T](X) = 7°X + - 4 ape X7+,

we obtain that ¢([7°]) = «°, and the height of [7°] is s. In the same way as for the case
s = 1, we obtain

() (X) = Ps(X) (1 + b1 X +--), (4)

where P,;(X) is a polynomial of degree p*. All elements of ks are roots of this polynomial,
P;(0) =0, and ¢(P,(X)) = m°. From the Weierstrass preparation theorem, we obtain that
all coefficients of the polynomials Ps(X), except the leading ones, are divisible by 7. Since
ks D Ks—1, the polynomial Ps(X) is divisible by Ps_1(X), and we have

Py(X) = Py_y(X) (7r ta X 4o apsc_ps,lxps—f”) . (5)

It follows that all coefficients of the polynomial

1

ﬂ'JralXJr~'+aps,p571Xpsfp37 , (6)

except the leading one, are divisible by 7, which means that this polynomial is Eisenstein.
Since the elements of K;/K,_; are roots of (6), the extension K/K;_1 is totally ramified.
The lemma is proved. B

Thus, we proved that the extension L/K is totally ramified. It follows that the residue
fields of the fields L and K are isomorphic. Therefore, we can choose a common system of
multiplicative representatives for L and K.

Lemma 2. Let © = {0, | 1 < k < g — 1} be a common system of multiplicative
representatives for L and K, and let T be a prime element in L. Then A = {0,7" |
1<k<q-—1,n>1} is a set of generators for My, with respect to the operation +p.

PROOF. Since 7 is a prime in L and the extension L/K is totally ramified, every o € M7,
can be represented in the form

a=aT+ - +ta, 7"+ . (7)
Now, we can successively approximate « by formal sums of elements of A. l
The same reasoning can be used to prove the following statement.
Lemma 3. If A= {a;; |1 >1,0 <j <qg—1} is a system of multiplicative representatives
n

such that a;; = 0,7 (mod 71, then A is a set of generators for My, with respect to the
operation + .
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Now we turn back to the proof of Theorem 2. Let & be a prime in Or,. We show that
cp(T,B) = 0 for all § € M,. By Lemma 3, it is sufficient to prove that there exists a
system {a;; | i > 1,0 < j < ¢ — 1} of multiplicative representatives such that

ai; = 0;7° (mod @) and cp(7,a;;) =0 for all 4 and j. (8)

By assumption, we have cp(a, —a) = 0 for all « € M. Hence, cp(a™/0,—a™/6) = 0,
where 6 € ©. It follows that

cp(a™, —a™ [8) = cp (™9, ~a™ [8) + 5 cp (6, —a™/6) = 0 (9)
since cp (0, 8) =0 for all @ € © and § € My,. If m is prime to p, then Eq. (9) implies that
cr(a, —a™/0) = 0. (10)
Putting o = 7 in Eq. (10), we obtain
cp(m,—7"/0) = 0. (11)

If 6 runs through a system of multiplicative representatives, then —1/6 runs through the
same system of representatives. Therefore, it is sufficient to prove that relations (8) are
valid for ¢ = 0 (mod p). Assuming that relations (8) hold when 0 < i < ps — 1 and
0 < j < g—1, we prove that they are valid for aps ;. We consider separately two different
cases: 1) s < panl and 2) s > ppjl
1) Since cp (7, as;) = 0, we have [7](cp(7,asj)) = cp(T, [7](as;)) = 0. Since the height of
[7] is 1, we have

[W](X) :WX+Q2X2+"'+GP_1XP_1—|—apo+...’

where ag, ..., a,_1 are divisible by 7 and a,, is not divisible by 7. Since the extension K,, /K
is totally ramified, we have v(w) = p™. Consequently, v([7](as;)) = ps. Since v(a,) = 0, we
see that if §; runs through the system of multiplicative representatives, apﬂg-’ runs through
the same system of representatives because p is prime to g — 1. Therefore, for each ¢ there
is a j such that

[7](as;) = 6; 7% (mod 7P*T1),

and we can take [7](as;) as aps,i.
2) In this case we have ps = p™ + s1, where s; > s. Consequently, ps; > p" + s1. As in
case 1), we obtain that

v([7](as,5)) =p" + s1.

If 7 = a7?" (mod 7P"*1) and a is not divisible by 7, then
[7](as, ;) = af;7P" 51 (mod 7P +5F1).

Since v(a) = 0, the elements af; run through the same system of multiplicative
representatives as 6; do. This implies that the required elements a,n,s, ,; exist, which
completes the proof of Theorem 2. W
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JlJjisi IPOU3BOJILHOIO JIOKAJIBHOIO IOJIs (KOHEYHOro pacumpeHusi mois Qp) u mpoussosbHOR dhopMmab-
HOH rpymnmsl Hajg nojeM K MBI pacCMaTpHBaeM aHAJOL Cp KJIACCUYIECKOro cuMBosa I'mibbepra. Teopema
BocrokoBa—®eceHKO yTBEpP:KIAET, YTO €CJIU Cp YAOBJIETBOPSET OCHOBHOMY CHMBOJIBHOMY CBOMCTBY, TO
cr = 0. Mp1 o6o6iaem teopemy BocrokoBa—®Pecenko na Gosiee mmpoknit Kyacc pOPMaIbHBIX TPYIIIL.
Ham mepsbiii pe3ysibTaT OTHOCHTCH K (POPMAJIBHBIM TPYIIIaM, ONPEJeIEHHBIM HaJ KOJIbIoM 1enbix O
¥ UMEIOIIUM B KadeCTBE KOJIbIA SHIOMOPGMU3MOB HEKOTOPOoe PpUKCHPOBaHHOE MOnKobio Op Kosbla O .
MpbI OKa3BIBAEM, UTO €CJIU Cf UMEET BBIIIEYITOMAHYTOE CUMBOJILHOE CBOACTBO, TO ¢ = 0. Hamr BTopoii pe-
3yJIbTAT YCUJIMBAET MEPBBIN B ciaydae (popMasibHbIX Ipynn XoHabl. CtaTbs cocTouT us Tpéx vyacreil. [locse
KpaTKOro BBeJeHMst (YacTb 1) MbI HAIIOMHHAEM OCHOBHBIE ONpeZEeHUsT U (HaKThl 0 (POPMAJBHBIX IPYTI-
MoBbIX 3aKoHax (JacTh 2). B mocienneit wactu crarbu Mbl GOPMyJIUpYEM U JOKA3bIBAEM HAIU OCHOBHBIE
pe3ynbrarsl (Teopemsbl 1 u 2). Bubsiunorp. 8 nass.
Karouesvie crosa: popmasibHasl rpylina, n30reHus, GopMaJIbHbIA MOJYyJIb, cuapuBanue ['nisbepra.

66 Becmnux CII6I'Y. Cep. 1. Mamemamura. Mexanuxa. Acmponomusn. T.8(61). 2016. Bun. 1



