About graphs critical for the condition for the smallest dimension of orthonormal labeling
Abstract
The concept of graph critical for condition that independence number is equal to smallest dimension of orthonormal labeling and strictly less then clique cover number was considered. Necessary and sufficient conditions for graph to be critical in this sense were found. Based on the results sufficient condition for equality of the independence number and the smallest dimension of orthonormal labeling of graph to imply equality of the independence number and the clique cover number was improved. Refs 16. Figs 1.Keywords:
graph, critical graph, orthonormal labeling, rank, minimal rank, symmetric matrices, clique, independent set, clique cover number, independence number, smallest dimension of orthonormal labeling
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.