О норменном свойстве символа Гильберта для многочленных формальных модулей в многомерном локальном поле
Аннотация
В двумерном локальном поле K, содержащем корень p-й степени из 1, рассматриваетсямногочленная формальная группа Fc(X, Y ) = X + Y + cXY, действующая на максимальном идеале M кольца целых OK, и конструктивное спаривание Гильберта {·, ·}c : K2(K) × Fc(M) → (ξ)c, где (ξ)c - модуль корней [p]c (изогении p-й степени группы Fc) относительно формаль-ного сложения. Для расширения двумерных локальных полей L/K рассматривается норменное отображение групп Милнора Norm : K2(L) → K2(K). Его образы называются нормами вK2(L). Основной результат работы заключается в проверке конструктивным образом норменного свойства спаривания {·, ·}c: {x, β}c = 0 ⇐⇒ x - норма в K2(K([p]-1(β))), где [p]-1(β) -c cкорни уравнения [p]c = β. Библиогр. 6 назв.
Скачивания
Библиографические ссылки
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.