Lp-inequalities for the polar derivative of a lacunary-type polynomial
DOI:
https://doi.org/10.21638/spbu01.2021.311Abstract
In this paper, we extend an inequality concerning the polar derivative of a polynomial in Lp-norm to the class of lacunary polynomials and thereby obtain a bound that depends on some of the coefficients of the polynomial as well.Keywords:
Lp-inequalities, polar derivative, polynomials
Downloads
Download data is not yet available.
References
Литература/References
1. Markov A. Sur une question posee par Mendeleieff. Bull. Acad. Sci. de St. Petersburg 62, 1–24 (1889).
2. Milovanovi´c G.V., Mitrinovi´c D. S., Rassias Th. Topics in polynomials: Extremal properties. Inequalituies, Zeros. Singapore, World scientific (1994).
3. Schaeffer A.C. Inequalities of A.Markoff and S.N.Bernstein for polynomials and related functions. Bull. Amer. Math. Soc. 47, 565–579 (1941).
4. Zygmund A. A remark on conjugate series. Proc. London Math. Soc. 34, 392–400 (1932).
5. Arestov V.V. On integral inequalities for trigonometric polynomials and their derivatives. Math. USSR-Izv. 18, 1–17 (1982). http://dx.doi.org/10.1070/IM1982v018n01ABEH001375 [Russ. ed.: Ob integral’nykh neravenstvakh dlia trigonometricheskikh mnogochlenov i ikh proizvodnykh. Izv. Akad. Nauk SSSR Ser. Mat. 45, 3–22 (1981)].
6. De Bruijn N.G. Inequalities concerning polynomial in the complex domain. Nederl. Akad. Wetensch. Proc. 50, 1265–1272 (1947).
7. Rahman Q. I., Schmeisser G. Lp inequalitites for polynomial. J. Approx. Theory 53, 26–32 (1988). https://doi.org/10.1016/0021-9045(88)90073-1
8. Govil N.K., Rahman Q.I. Functions of exponential type not vanishing in a half-plane and related polynomials. Trans. Amer. Math. Soc. 137, 501–517 (1969). https://doi.org/10.2307/1994818
9. Rather N.A. Extremal properties and location of the zeros of polynomials. PhD thesis. University of Kashmir (1998).
10. Marden M. Geometry of polynomials. In: Mathematical surveys, no. 3. Amer. Math. Soc. (1989).
11. Aziz A., Rather N.A. On an inequality concerning the polar derivative of a polynomial. Proc. Indian Acad. Sci. (Math. Sci.) 117, 349–357 (2007). https://doi.org/10.1007/s12044-007-0030-0
12. Aziz A., Rather N.A., Aliya Q. Lq norm inequalities for the polar derivative of a polynomial. Math. Ineq. and Appl. 11, 283–296 (2008).
13. Rather N.A. Some integral inequalities for the polar derivative of a polynomial. Math. Balk. 22, 207–216 (2008).
14. Rather N.A. Lp inequalitites for the polar derivative of a polynomial. J. Inequal. Pure and Appl. Math. 9 (4), 103 (2008).
15. Rather N.A., Iqbal A., Hyun H.G. Integral inequalities for the polar derivative of a polynomial. Non Linear Funct. Anal. Appl. 23 (2), 381–393 (2018).
16. Gulzar S., Rather N.A. Inequalities concerning the polar derivative of a polynomial. Bull. Malays. Math.Sci. Soc. 40, 1691–1700 (2017). https://doi.org/10.1007/s40840-015-0183-4
17. Aziz A., Rather N.A. Lp inequalities for polynomials. Glas. Math. 32, 39–43 (1997).
18. Aziz A., Rather N.A. Some Zygmund type Lq inequalities for polynomials. J. Math. Anal. Appl. 289, 14–29 (2004). https://doi.org/10.1016/S0022-247X(03)00530-4
Downloads
Published
2021-09-26
How to Cite
Rather, N. A., Ali, L., & Gulzar, S. (2021). Lp-inequalities for the polar derivative of a lacunary-type polynomial. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8(3), 502–510. https://doi.org/10.21638/spbu01.2021.311
Issue
Section
Mathematics
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.