On solutions of the equation of small transverse vibrations of a moving canvas
DOI:
https://doi.org/10.21638/spbu01.2022.214Abstract
The paper considers a model problem of one-dimensional small transverse vibrations of a canvas moving at a constant speed, which is fixed in a hinged manner. The oscillatory process is described by a linear differential equation of the 4th order with constant coefficients. In the model under consideration, the Coriolis force is taken into account, which leads to the appearance of a term with a mixed derivative in the differential equation. This effect makes it impossible to use the classical method of separating variables. However, families of exact solutions of the oscillation equation in the form of a traveling wave have been constructed. For the initial-boundary value problem, it was established that the solution can be constructed in the form of a Fourier series according to the system of eigenfunctions of the auxiliary problem on beam vibrations. For the considered oscillatory process, the law of conservation of energy is established and the uniqueness of the solution to the initialboundary value problem is proved.Keywords:
the equation of vibrations of a moving canvas, the law of conservation of energy, exact solutions
Downloads
Download data is not yet available.
References
Литература
1. Lei Lu, Xiao-Dong Yang, Wei Zhang, Siu-Kai Lai. On Travelling Wave Modes of Axially Moving String and Beam. Shock and Vibration 2019, 9496180 (2019). https://doi.org/10.1155/2019/9496180
2. En Wei Chen, Jun Wang, Kai Zhong, Yimin Lu, Haozheng Wei. Vibration dissipation of an axially traveling string with boundary damping. Journal of Vibroengineering 19 (8), 5780–5795 (2017). https://doi.org/10.21595/jve.2017.18651
3. Муравей Л.А., Петров В.М., Романенков А.М. О задаче гашения поперечных колеба- ний продольно движущейся струны. Вестник Мордовского университета 28 (4), 472–485 (2018). https://doi.org/10.15507/0236- 2910.028.201804.472-485
4. Banichuk N., Jeronen J., Neittaanm¨aki P., Saksa, T., Tuovinen T. Mechanics of Moving Materials. In Ser.: Solid Mechanics and its Applications, vol. 207. Springer (2014).
5. Liu Ning, Yang Guolai, Chen Bo. Transverse vibration analysis of an axially moving beam with lumped mass. Journal of Vibroengineering 16 (7), 3209–3217 (2014).
6. Pham Ph.-T., Hong K.-Sh. Dynamic models of axially moving systems: A review. Nonlinear Dyn. 100, 315–349 (2020). https://doi.org/10.1007/s11071-020-05491-z
7. Malik Kh.H., Dehraj S., Jamali S., Sandilo S.H., Awan A.M. On transversal vibrations of an axially moving beam under influence of viscous damping. Journal of mechanics of Continua and Mathematical Sciences 15 (11) (2020). https://doi.org/10.26782/jmcms.2020.11.00002
8. Chen An, Jian Su. Dynamic response of clamped axially moving beams: Integral transform solution. Applied Mathematics and Computation 218 (2), 249–259 (2011).
9. Ozhan B.B. Vibration and Stability Analysis of Axially Moving Beams with Variable Speed and Axial Force. International Journal of Structural Stability and Dynamics 14 (6), 1450015 (2014). https://doi.org/10.1142/S0219455414500151
10. Pellicano F., Vestroni F. Nonlinear Dynamics and Bifurcations of an Axially Moving Beam. J. Vib. Acoust. 122 (1), 21–30 (2000). https://doi.org/10.1115/1.568433
11. Шубин М.А. Лекции об уравнениях математической физики. Мocква, МЦНМО (2003).
12. Рудаков И.А. Задача о колебаниях двутавровой балки с закрепленным и шарнирно опер- тым концами. Вестник МГТУ им. Н.Э.Баумана. Сер. Естественные науки, no. 3, 4–21 (2019). https://doi.org/10.18698/1812-3368-2019-3-4-21
References
1. Lei Lu, Xiao-Dong Yang, Wei Zhang, Siu-Kai Lai. On Travelling Wave Modes of Axially Moving String and Beam. Shock and Vibration 2019, 9496180 (2019). https://doi.org/10.1155/2019/9496180
2. En Wei Chen, Jun Wang, Kai Zhong, Yimin Lu, Haozheng Wei. Vibration dissipation of an axially traveling string with boundary damping. Journal of Vibroengineering 19 (8), 5780–5795 (2017). https://doi.org/10.21595/jve.2017.18651
3. Muravei L.A., Petrov V.M., Romanenkov A.M. On the problem of damping the transverse vibrations of a longitudinally moving string. Vestnik Mordovskogo universiteta 28 (4), 472–485 (2018). https://doi.org/10.15507/0236-2910.028.201804.472-485 (In Russian)
4. Banichuk N., Jeronen J., Neittaanm¨aki P., Saksa, T., Tuovinen T. Mechanics of Moving Materials. In Ser.: Solid Mechanics and its Applications, vol. 207. Springer (2014).
5. Liu Ning, Yang Guolai, Chen Bo. Transverse vibration analysis of an axially moving beam with lumped mass. Journal of Vibroengineering 16 (7), 3209–3217 (2014).
6. Pham Ph.-T., Hong K.-Sh. Dynamic models of axially moving systems: A review. Nonlinear Dyn. 100, 315–349 (2020). https://doi.org/10.1007/s11071-020-05491-z
7. Malik Kh.H., Dehraj S., Jamali S., Sandilo S.H., Awan A.M. On transversal vibrations of an axially moving beam under influence of viscous damping. Journal of mechanics of Continua and Mathematical Sciences 15 (11) (2020). https://doi.org/10.26782/jmcms.2020.11.00002
8. Chen An, Jian Su. Dynamic response of clamped axially moving beams: Integral transform solution. Applied Mathematics and Computation 218 (2), 249–259 (2011).
9. Ozhan B.B. Vibration and Stability Analysis of Axially Moving Beams with Variable Speed and Axial Force. International Journal of Structural Stability and Dynamics 14 (6), 1450015 (2014). https://doi.org/10.1142/S0219455414500151
10. Pellicano F., Vestroni F. Nonlinear Dynamics and Bifurcations of an Axially Moving Beam. J. Vib. Acoust. 122 (1), 21–30 (2000). https://doi.org/10.1115/1.568433
11. Shubin M.A. Lectures on the equations of mathematical physics. Moscow, MTsNMO Publ. (2003).
12. Rudakov I.A. Oscillation Problem for an I-Beam with Fixed and Hinged End Supports. Herald of the Bauman Moscow State Technical University. Ser. Natural Sciences, no. 3, 4–21 (2019). https://doi.org/10.18698/1812-3368-2019-3-4-21 (In Russian)
Downloads
Published
2022-07-06
How to Cite
Romanenkov А. M. (2022). On solutions of the equation of small transverse vibrations of a moving canvas. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(2), 346–356. https://doi.org/10.21638/spbu01.2022.214
Issue
Section
Mechanics
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.