The numerical simulation of air heating dynamics by interelectrode discharge

Authors

  • Maksim E. Renev St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Yuri V. Dobrov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Valery A. Lashkov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Igor Ch. Mashek St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2021.414

Abstract

In the paper the first 200 ns of the air pulsed interelectrode discharge with gasdynamics dynamics is considered. Exactly this first step of the discharge evolution is the most interesting for obtaining the properties of heat power input in the interelectrode gap. The data about heating of layers near the cathode and the anode, volume heating at the end of the first step are presented. The spherical shock wave is produced near the cathode.

Keywords:

impulse interelectrode discharge, plasma, simulation, air, thermal physics

Downloads

Download data is not yet available.
 

References

Литература

1. Fomin V., Tretyakov P., Taran J.P. Flow control using various plasma and aerodynamic approaches (Short Review). Aerospace science and technology 8, 411–421 (2004). https://doi.org/10.1016/j.ast.2004.01.005

2. Knight D. Survey of aerodynamic drag reduction at high speed by energy deposition. J. of Propulsion and Power 24, 1153–1167 (2008). https://doi.org/10.2514/1.24595

3. Kourtzanidis K., Raja L. Numerical Simulation of DC Glow Discharges for Shock Wave Modification. 54th AIAA Aerospace Sciences Meeting (2016). https://doi.org/10.2514/6.2016-2157

4. Lashkov V.A., Karpenko A.G., Khoronzhuk R.S., Mashek I. Ch. Effect of Mach number on the efficiency of microwave energy deposition in supersonic flow. Phys. Plasmas 23, 052305 (2016). https://doi.org/10.1063/1.4949524

5. Azarova O., Knight D., Kolesnichenko Y. Pulsating stochastic flows accompanying microwave filament/supersonic shock layer interaction. Shock Waves 21, 439–450, 052305 (2011). https://doi.org/10.1007/s00193-011-0319-x

6. Сайфутдинов А.И., Кустова Е.В., Карпенко А.Г., Лашков В.А. Динамика сфокусированного импульсного микроволнового разряда в воздухе. Физика Плазмы 45, 568–576 (2019). https://doi.org/10.1134/S036729211905010X

7. Saifutdinov A.I., Kustova E.V. Dynamics of plasma formation and gas heating in a focused-microwave discharge in nitrogen. Journal of Applied Physics 129, 023301 (2021). https://doi.org/10.1063/5.0031020

8. Popov N.A. Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production. Plasma Sources Sci. Technol. 25, 044003 (2016). https://doi.org/10.1063/5.0031020

9. Bourdon A., Pasko V.P., Liu N.Y., Celestin S., Segur P., Marode E. Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations. Plasma Sources Sci. Technol. 16, 656–678 (2007). https://doi.org/10.1088/0963-0252/16/3/026

10. Morgan database. Available at: www.lxcat.net (accessed: September 10, 2021).

11. Park C., Howe J.T., Jaffe R.L., Candler G.V. Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries. Journal of Thermophysics and Heat Transfer 8, 9–23 (1994).

12. Райзер Ю.П. Физика газового разряда. Долгопрудный, Интеллект (2009).

References

1. Fomin V., Tretyakov P., Taran J.P. Flow control using various plasma and aerodynamic approaches (Short Review). Aerospace science and technology 8, 411–421 (2004). https://doi.org/10.1016/j.ast.2004.01.005

2. Knight D. Survey of aerodynamic drag reduction at high speed by energy deposition. J. of Propulsion and Power 24, 1153–1167 (2008). https://doi.org/10.2514/1.24595

3. Kourtzanidis K., Raja L. Numerical Simulation of DC Glow Discharges for Shock Wave Modification. 54th AIAA Aerospace Sciences Meeting (2016). https://doi.org/10.2514/6.2016-2157

4. Lashkov V.A., Karpenko A.G., Khoronzhuk R.S., Mashek I. Ch. Effect of Mach number on the efficiency of microwave energy deposition in supersonic flow. Phys. Plasmas 23, 052305 (2016). https://doi.org/10.1063/1.4949524

5. Azarova O., Knight D., Kolesnichenko Y. Pulsating stochastic flows accompanying microwave filament/supersonic shock layer interaction. Shock Waves 21, 439–450, 052305 (2011). https://doi.org/10.1007/s00193-011-0319-x

6. Saifutdinov A.I., Kustova E.V., Karpenko A.G., Lashkov V.A. Dynamics of focused pulsed microwave discharge in air. Fizika Plazmy 45, 568–576 (2019). https://doi.org/10.1134/S036729211905010X (In Russian) [Engl. transl.: Plasma Physics Reports 45, 602–609 (2019). https://doi.org/10.1134 /S1063780X19050106].

7. Saifutdinov A.I., Kustova E.V. Dynamics of plasma formation and gas heating in a focused-microwave discharge in nitrogen. Journal of Applied Physics 129, 023301 (2021). https://doi.org/10.1063/5.0031020

8. Popov N.A. Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production. Plasma Sources Sci. Technol. 25, 044003 (2016). https://doi.org/10.1063/5.0031020

9. Bourdon A., Pasko V.P., Liu N.Y., Celestin S., Segur P., Marode E. Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations. Plasma Sources Sci. Technol. 16, 656–678 (2007). https://doi.org/10.1088/0963-0252/16/3/026

10. Morgan database. Available at: www.lxcat.net (accessed: September 10, 2021).

11. Park C., Howe J.T., Jaffe R.L., Candler G.V. Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries. Journal of Thermophysics and Heat Transfer 8, 9–23 (1994).

12. Raizer Yu.P. Gas discharge physics. Dolgoprudny, Intellect Publ. (2009). (In Russian)

Published

2022-01-04

How to Cite

Renev, M. E., Dobrov, Y. V., Lashkov, V. A., & Mashek, I. C. (2022). The numerical simulation of air heating dynamics by interelectrode discharge. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8(4), 683–694. https://doi.org/10.21638/spbu01.2021.414

Issue

Section

Mechanics