A survey of results of St.Petersburg State University research school on nonlinear partial differential equations I
DOI:
https://doi.org/10.21638/spbu01.2024.101Abstract
The article contains a review of the most important results obtained in the framework of the St.Petersburg State University research school on nonlinear PDEs (the O.A. Ladyzhenskaya - N.N. Uraltseva school). The main attention is paid to the works carried out at our university over the past 50 years. The first part of the review concerns the solvability and qualitative properties of solutions to boundary value problems for the second order scalar quasilinear elliptic and parabolic equations, as well as variational problems. The planned second part of the review will include sections on fully nonlinear equations and systems of equations and on free boundary problems.Downloads
References
Литература
Смирнов В.И. (ред.). Математика в Петербургском—Ленинградском университете. Ленинград, Изд-во Ленингр. ун-та (1970).
Апушкинская Д.Е., Назаров А.И. Семинару имени В.И.Смирнова — 75 лет! Записки научных семинаров ПОМИ 519, 5–9 (2022).
Соболев С.Л. Некоторые применения функционального анализа в математической физике. Ленинград, Изд-во Ленингр. ун-та (1950).
Ладыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости. Москва, Физматлит (1961).
Серёгин Г.А., Уральцева Н.Н. Ольга Александровна Ладыженская: к 80-летию со дня рождения. УМН 58, 2 (350), 181–206 (2003). https://doi.org/10.4213/rm626
Ладыженская О.А. Первая краевая задача для квазилинейных параболических уравнений. Доклады Акад. наук СССР 107, 636–639 (1956).
De Giorgi E. Sulla differenziabilit‘a e l’analiticit‘a delle estremali degli integrali multipli regolari. Mem. Accad. Sci. 3, 25–43 (1957).
Nash J. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 931–954 (1958). https://doi.org/10.2307/2372841
Мазья В. Г. Примеры нерегулярных решений квазилинейных эллиптических уравнений с аналитическими коэффициентами. Функциональный анализ и его приложение 2 (3), 53–57 (1968).
De Giorgi E. Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. Ital. (4) 1, 135–137 (1968).
Giusti E., Miranda M. Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni. Boll. Un. Mat. Ital. 4 (1), 219–226 (1968).
Ладыженская О.А., Уральцева Н.Н. Линейные и квазилинейные уравнения эллиптического типа. Москва, Наука (1964).
Ладыженская О.А., Уральцева Н.Н. Линейные и квазилинейные уравнения эллиптического типа. 2-е изд. перераб. Москва, Наука (1973).
Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа. Москва, Наука (1967).
Денисова И.В., Ладыженская О.А., Серёгин Г.А., Уральцева Н.Н., Фролова Е.В. К юбилею Всеволода Алексеевича Солонникова. Записки научных семинаров ПОМИ 306, 7–15 (2003).
Денисова И.В., Пилецкас К.И., Репин С.И., Серёгин Г.А., Уральцева Н.Н., Фролова Е.В. К 75-летию Всеволода Алексеевича Солонникова. Записки научных семинаров ПОМИ 362, 5–14 (2008).
The Maz’ya anniversary collection. Vol. 1: On Maz’ya’s work in functional analysis, partial differential equations and applications. Based on talks given at the conference. Rostock, Germany. August 31 — September 4, 1998, Rossmann J., Takˇac P., Wildenhain G. Birkh¨auser (ed.), Basel. Vol. 109 of Oper. Theory Adv. Appl. (1999).
Агранович М.С., Бураго Ю.Д., Вайнберг Б.Р., Вишик М.И., Гиндикин С. Г., Кондратьев В.А., Маслов В.П., Поборчий С. В., Решетняк Ю. Г., Хавин В.П., Шубин М.А. Владимир Гилелевич Мазья: к 70-летию со дня рождения. УМН 63, 1 (379), 183–189 (2008). https://doi.org/10.4213/rm9127
Анолик М.В., Бураго Ю.Д., Демьянович Ю.К., Кисляков С.В., Леонов Г.А., Морозов Н.Ф., Поборчий С. В., Уральцева Н.Н., Хавин В.П., Широков Н.А. Владимир Гилелевич Мазья: к семидесятилетию. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 53 (4), 3–6 (2008).
Анолик М. В., Апушкинская Д., Архипова А.А., Бураго Ю.Д., Демьянович Ю.К., Ибрагимов И.А., Кисляков С.В., Леонов Г.А., Мишурис Г., Мовчан А., Морозов Н.Ф., Назаров А.И., Нивс М., Романовский И. В., Слепян Л., Слисенко А. О., Солонников В.А., Уральцева Н.Н. К юбилею Владимира Гилелевича Мазьи. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 5 (63), вып. 3, 524–526 (2018).
Уральцева Н.Н. Вырождающиеся квазилинейные эллиптические системы. Записки научных семинаров ЛОМИ 7, 184–222 (1968).
Bombieri E., De Giorgi E., Miranda M. Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche. Arch. Rational Mech. Anal. 32, 255–267 (1969). https://doi.org/10.1007/BF00281503
Ladyzhenskaya O.A., Uraltseva N.N. Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations. Comm. Pure Appl. Math. 23, 677–703 (1970). https://doi.org/10.1002/cpa.3160230409
Ладыженская О.А., Уральцева Н.Н. Локальные оценки градиентов решений простейшей регуляризации некоторого класса неравномерно эллиптических уравнений. Записки научных семинаров ПОМИ 213, 75–92 (1994).
Уральцева Н.Н. Разрешимость задачи о капиллярах. Вестник Ленинградского университета. Сер. 1. Математика. Механика. Астрономия 18, 1 (4), 54–64 (1973).
Уральцева Н.Н. Разрешимость задачи о капиллярах. Ч. 2. Вестник Ленинградского университета. Сер. 1. Математика. Механика. Астрономия 20, 1 (1), 143–149 (1975).
Уральцева Н.Н. Об оценках максимумов модулей градиентов для решений задач капиллярности. Записки научных семинаров ЛОМИ 115, 274–284 (1982).
Уральцева Н.Н., Урдалетова А.Б. Ограниченность градиентов обобщенных решений вырождающихся неравномерно эллиптических квазилинейных уравнений. Вестник Ленинградского университета. Сер. 1. Математика. Механика. Астрономия 28, 19 (4), 50–56 (1983).
Baroni P., Colombo G., Mingione G. Nonautonomous functionals, borderline cases and related function classes. Алгебра и анализ 27 (3), 118–151 (2015).
Filippis C. de, Mingione G. A borderline case of Calderon—Zygmund estimates for nonuniformly elliptic problems. Алгебра и анализ 31 (3), 82–15 (2019).
Крылов Н.В., Сафонов М.В. Некоторое свойство решений параболических уравнений с измеримыми коэффициентами. Изв. АН СССР. Сер. матем. 44 (1), 161–75 (1980).
Ладыженская О.А., Уральцева Н.Н. Оценка гёльдеровской нормы решений квазилинейных эллиптических уравнений второго порядка общего вида. Записки научных семинаров ЛОМИ 96, 161–168 (1980).
Ладыженская О.А., Уральцева Н.Н. Об оценках max ux для решений квазилинейных эллиптических и параболических уравнений общего вида и теоремах существования. Записки научных семинаров ЛОМИ 138, 90–107 (1984).
Назаров А.И., Уральцева Н.Н. Выпукло-монотонные оболочки и оценка максимума решения параболического уравнения. Записки научных семинаров ЛОМИ 147, 95–109 (1985).
Назаров А.И. Принцип максимума А.Д.Александрова. Современная математика и ее приложения 29, 127–143 (2005).
Апушкинская Д.Е., Назаров А.И. Лемма о нормальной производной и вокруг нее. УМН 77, 2 (464), 3–68 (202). https://doi.org/10.4213/rm10049
Ладыженская О.А., Уральцева Н.Н. Оценки константы Гёльдера для функций, удовлетворяющих равномерно эллиптическому или равномерно параболическому квазилинейному неравенству с неограниченными коэффициентам. Записки научных семинаров ЛОМИ 147, 72–94 (1985).
Ладыженская О.А., Уральцева Н.Н. Оценки на границе области первых производных функций, удовлетворяющих эллиптическому или параболическому неравенству. Тр. МИАН СССР 179, 102–125 (1988).
Ладыженская О.А., Уральцева Н.Н. Обзор результатов по разрешимости краевых задач для равномерно эллиптических и параболических квазилинейных уравнений второго порядка, имеющих неограниченные особенности. УМН 41, 5 (251), 59–83 (1986).
Uraltseva N. N. Estimates of derivatives of solutions of elliptic and parabolic inequalities. Proceedings of the International Congress of Mathematicians. Vol. 1, 2 (Berkeley, Calif., 1986). Amer. Math. Soc., Providence, RI, 1143–1149 (1987).
Назаров А.И. Гёльдеровские оценки решений вырождающихся недивергентных эллиптических и параболических уравнений. Алгебра и анализ 21 (4), 174–195 (2009).
Uraltseva N.N. Gradient estimates for solutions of nonlinear parabolic oblique boundary problem. Geometry and nonlinear partial differential equations (Fayetteville, AR, 1990). Amer. Math. Soc., Providence, RI, Contemp. Math. 119–130 (1992). https://doi.org/10.1090/conm/127/1155414
Назаров А.И. Гёльдеровские оценки для ограниченных решений задач с наклонной производной для параболических уравнений недивергентной структуры. Проблемы мат. анализа 11, 37–46 (1990).
Уральцева Н.Н. Нелинейная задача с косой производной для параболических уравнений. Записки научных семинаров ЛОМИ 188, 143–158 (1991).
Назаров А.И., Уральцева Н.Н. Задача с наклонной производной для квазилинейного параболического уравнения. Записки научных семинаров ЛОМИ 200, 118–131 (1992).
Вентцель А.Д. О граничных условиях для многомерных диффузионных процессов. Теория вероятн. и ее примен. 4 (2), 172–185 (1959).
Апушкинская Д. Е. Оценка максимума решений параболических уравнений с граничным условием Вентцеля. Вестник Ленинградского университета. Сер. 1. Математика. Механика. Астрономия 36, 2 (8), 3–12 (1991).
Apushkinskaya D.E., Nazarov A. I. H¨older estimates of solutions to initial-boundary value problems for parabolic equations of nondivergent form with Wentzel boundary condition. Nonlinear evolution equations. Amer. Math. Soc., Providence, RI 164, 1–13. of Amer. Math. Soc. Transl. Ser. 2 (1995). https://doi.org/10.1090/trans2/164/01
Апушкинская Д.Е., Назаров А.И. Нестационарная задача Вентцеля с квадратичным ростом по градиенту. Проблемы мат. анализа 15, 33–46 (1995).
Apushkinskaya D.E., Nazarov A. I. A survey of results on nonlinear Venttsel problems. Appl. Math. 45 (1), 69–80 (2000). https://doi.org/10.1023/A:1022288717033
Лукьянов В.В., Назаров А.И. Решение задачи Вентцеля для уравнения Лапласа и Гельмгольца с помощью повторных потенциалов. Записки научных семинаров ПОМИ 250, 203–218 (1998). Исправление: Записки научных семинаров ПОМИ 324, 129–130 (2005).
Apushkinskaya D.E., Nazarov A. I. Linear two-phase Venttsel problems. Ark. Mat. 39 (2), 201–222 (2001). https://doi.org/10.1007/BF02384554
Апушкинская Д. Е., Назаров А.И. Квазилинейные эллиптические двухфазные задачи Вентцеля в трансверсальном случае. Проблемы мат. анализа 24, 3–28 (2002).
Назаров А.И. О нестационарной двухфазной задаче Вентцеля в трансверсальном случае. Проблемы мат. анализа 28, 71–82 (2004).
Назаров А.И., Палецких А.А. О гёльдеровости решений эллиптической задачи Вентцеля. Доклады РАН 465 (5), 532–536 (2015). https://doi.org/10.7868/S0869565215350066
Медведев К.М., Назаров А.И. Оценка Гёльдера для решения дивергентного эллиптического уравнения на стратифицированном множестве. Алгебра и анализ 36 (1), 170–194 (2024).
Мироненко Ф.Д., Назаров А.И. Локальная оценка максимума типа АлександроваБакельмана для решений эллиптических уравнений на стратифицированном множестве вида «книжка». Записки научных семинаров ПОМИ 519, 105–113 (2022).
Мироненко Ф.Д. Оценки максимума для решений эллиптического и параболического уравнений на стратифицированном множестве вида «книжка». Сибирский математический журн. 64 (6), 1263–1278 (2023).
Creo S., Lancia M. R., Nazarov A., Vernole P. On two-dimensional nonlocal Venttsel’ problems in piecewise smooth domains. Discrete Contin. Dyn. Syst. Ser. S. 12, (1), 57–64 (2019). https://doi.org/10.3934/dcdss.2019004
Creo S., Lancia M.R., Nazarov A. I. Regularity results for nonlocal evolution Venttsel’ problems. Fract. Calc. Appl. Anal. 23 (5), 1416–1430 (2020). https://doi.org/10.1515/fca-2020-0070
Apushkinskaya D.E., Nazarov A. I., Palagachev D.K., Softova L.G. Elliptic Venttsel problems with VMO coefficients. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31 (2), 391–399 (2020). https://doi.org/10.4171/rlm/896
Apushkinskaya D.E., Nazarov A. I., Palagachev D.K., Softova L.G. Lp-theory of Venttsel BVPs with discontinuous data. Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 98 (2), A1–16 (2020). https://doi.org/10.1478/AAPP.98S2A1
Apushkinskaya D.E., Nazarov A. I., Palagachev D.K., Softova L.G. Venttsel boundary value problems with discontinuous data. SIAM J. Math. Anal. 53 (1), 221–252 (2021). https://doi.org/10.1137/19M1286839
Апушкинская Д.Е., Назаров А.И., Палагачев Д.К., Софтова Л. Г. Нестационарная задача Вентцеля со старшими коэффициентами из класса VMOx. Доклады РАН 510, 13–17 (2023). https://doi.org/10.31857/S2686954322600707
Апушкинская Д. Е., Назаров А.И., Палагачев Д.К., Софтова Л. Г. Квазилинейная параболическая задача Вентцеля с разрывными старшими коэффициентами. Функц. анализ и его прил. 57 (2), 93–99 (2023). https://doi.org/110.4213/faa4098
Apushkinskaya D.E., Nazarov A. I., Palagachev D.K., Softova L.G. Nonstationary Venttsel problems with discontinuous data. J. Diff. Equations 375, 538–566 (2023). https://doi.org/10.1016/j.jde.2023.08.024
Апушкинская Д.Е., Назаров А.И. Оценки на границе области градиента решения недивергентного параболического уравнения с «составной» правой частью и коэффициентами при младших производных. Проблемы мат. анализа 14, 3–27 (1995).
Апушкинская Д.Е., Назаров А.И. Задача Дирихле для квазилинейных эллиптических уравнений в областях с гладкими замкнутыми ребрами. Проблемы мат. анализа 21, 3–29 (2000).
Назаров А.И. Оценки максимума решений эллиптических и параболических уравнений через весовые нормы правой части. Алгебра и анализ 13 (2), 151–164 (2001).
Назаров А.И. Lp-оценки решения задач Дирихле и Неймана для уравнения теплопроводности в клине с ребром произвольной коразмерности. Проблемы мат. анализа 22, 126–159 (2001).
Kozlov V., Nazarov A. The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients. Math. Nachr. 282 (9), 1220–1241 (2009). https://doi.org/10.1002/mana.200910796
Kozlov V., Nazarov A. The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge. Math. Nachr. 287 (10), 1142–1165 (2014). https://doi.org/10.1002/mana.201100352
Kozlov V., Nazarov A. Oblique derivative problem for non-divergence parabolic equations with time-discontinuous coefficients. Proceedings of the St. Petersburg Mathematical Society. Vol.XV. Advances in mathematical analysis of partial differential equations. Amer. Math. Soc., Providence, RI. Vol. 232. Оf Amer. Math. Soc. Transl. Ser. 2, 177–191 (2014). https://doi.org/10.1090/trans2/232/10
Kozlov V., Nazarov A. Oblique derivative problem for non-divergence parabolic equations with time-discontinuous coefficients in a wedge. J. Math. Anal. Appl. 435 (1), 210–228 (2016).https://doi.org/10.1016/j.jmaa.2015.10.029
Назаров А.И., Уральцева Н.Н. Неравенство Гарнака и связанные с ним свойства решений эллиптических и параболических уравнений с бездивергентными младшими коэффициентами. Алгебра и анализ 23 (1), 136–168 (2011).
Nazarov A. I. A centennial of the Zaremba—Hopf—Oleinik lemma. SIAM J. Math. Anal. 44 (1), 437–453 (2012). https://doi.org/10.1137/110821664
Apushkinskaya D.E., Nazarov A. I. A counterexample to the Hopf—Oleinik lemma (elliptic case). Anal. PDE 9 (2), 439–458 (2016). https://doi.org/10.2140/apde.2016.9.439
Apushkinskaya D.E., Nazarov A. I. On the boundary point principle for divergencetype equations. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30 (4), 677–699 (2019). https://doi.org/10.4171/RLM/867
Ibraguimov A., Nazarov A. I. On Phragmen—Lindel¨of principle for non-divergence type elliptic equations and mixed boundary conditions. Mat. Fiz. Komp’yut. Model. 3 (40), 65–76 (2017). https://doi.org/10.15688/mpcm.jvolsu.2017.3.5
Cao D., Ibraguimov A., Nazarov A. I. Mixed boundary value problems for nondivergence type elliptic equations in unbounded domains. Asymptot. Anal. 109 (1–2), 75–90 (2018). https://doi.org/10.3233/asy-181469
Kozlov V., Nazarov A. A comparison theorem for nonsmooth nonlinear operators. Potentia Anal. 54 (3), 471–481 (2021). https://doi.org/10.1007/s11118-020-09834-8
Архипова А.А. О гладкости решений задачи с препятствием. Записки научных семинаров ЛОМИ 38, 7–9 (1973).
Архипова А.А. О наименьших суперрешениях для задачи с препятствием. Изв. АН СССР. Сер. матем. 37 (5), 1155–1185 (1973).
Архипова А.А. Задача с разрывным препятствием для равномерно эллиптических уравнений. Вестник Ленинградского университета. Сер. 1. Математика. Механика. Астрономия 19, 4 (19), 154–155 (1974).
Архипова А.А. О предельной гладкости решения задачи с двусторонним ограничением. Вестник Ленинградского университета. Сер. 1. Математика. Механика. Астрономия 29, 2 (7), 7–9 (1984).
Уральцева Н.Н. О сильных решениях обобщенной задачи Синьорини. Сибирский математический журн. 19 (5), 1204–1212 (1978).
Уральцева Н.Н. Непрерывность по Гёльдеру градиентов решений параболических уравнений при граничных условиях типа Синьорини. Доклады Академии наук СССР 280 (3), 563–565 (1985).
Архипова А.А., Уральцева Н.Н. Регулярность решений диагональных эллиптических систем при выпуклых ограничениях на границе области. Записки научных семинаров ЛОМИ 152, 5–17 (1986).
Архипова А.А., Уральцева Н.Н. Предельная гладкость решений вариационных неравенств при выпуклых ограничениях на границе области. Записки научных семинаров ЛОМИ 163, 5–16 (1987).
Архипова А.А., Уральцева Н.Н. Регулярность решения задачи с двусторонним ограничением на границе для эллиптических и параболических уравнений. Труды МИАН СССР 179, 5–22 (1988).
Архипова А.А., Уральцева Н.Н. О существовании гладких решений задач с выпуклыми ограничениями на границе области для параболических систем. Записки научных семинаров ЛОМИ 171, 5–11 (1989).
Arkhipova A., Uraltseva N. Sharp estimates for solutions of a parabolic Signorini problem. Math. Nachr. 177, 11–19 (1996). https://doi.org/10.1002/mana.19961770103
Уральцева Н.Н. О регулярности решений вариационных неравенств. УМН 42, 6 (258), 151–174 (1987).
Apushkinskaya D.E., Repin S. I. Thin obstacle problem: estimates of the distance to the exact solution. Interfaces Free Bound. 20 (4), 511–531 (2018). https://doi.org/10.4171/IFB/410
Апушкинская Д.Е., Репин С.И. Бигармоническая задача с препятствием: гарантированные и вычисляемые оценки ошибок для приближенных решений. Журналвычис л. матем. и матем. физ. 60 (11), 1881–1897 (2020). https://doi.org/10.31857/S0044466920110034
Apushkinskaya D., Repin S. Functional a posteriori error estimates for the parabolic obstacle problem. Comput.MethodsAppl.Math. 22 (2), 259–276 (2022). https://doi.org/10.1515/cmam-2021-0156
Osmolovskii V. G. Boundary value problems with free surfaces in the theory of phase transitions. Differ. Equ. 53 (13), 1734–1763 (2017). https://doi.org/10.1134/s0012266117130043
Осмоловский В. Г. Независимость температур фазовых переходов от области, занимаемой двух-фазовой упругой средой. Проблемы мат. анализа 66, 147–152 (2012).
Осмоловский В. Г. Вычисление температур фазовых переходов для одной анизотропной модели двухфазовой упругой среды. Проблемы мат. анализа 84, 151–160 (2016).
Осмоловский В. Г. Точные решения вариационной задачи теории фазовых переходов механики сплошных сред. Проблемы мат. анализа 27, 171–206 (2004).
Осмоловский В. Г. Теорема существования и слабая форма уравнений Лагранжа для вариа-ционной задачи теории фазовых превращений. Сибирский матем. журн. 35 (4), 835–846 (1994).
Осмоловский В. Г. Изопериметрическое неравенство и состояния равновесия для двухфазовой среды. Проблемы мат. анализа 36, 81–88 (2007).
Bildhauer M., Fuchs M., Osmolovskii V. The effect of a surface energy term on the distribution of phases in an elastic medium with a two-well elastic potential. Math. Methods Appl. Sci. 25 (2), 149–178 (2002). https://doi.org/10.1002/mma.282
Осмоловский В. Г. Критерий слабой полунепрерывности снизу функционала энергии двухфа-зовой упругой среды. Проблемы мат. анализа 26, 215–254 (2003).
Осмоловский В. Г. Сравнение двух способов учета поверхностной энергии в задаче о фазовых переходах в больших силовых полях. Проблемы мат. анализа 19, 182–192 (1999).
Bildhauer M., Fuchs M., Osmolovskii V.G. The effect of a penalty term involving higher order derivatives on the distribution of phases in an elastic medium with a two-well elastic potential. Math. Methods Appl. Sci. 25 (4), 289–308 (2002). https://doi.org/10.1002/mma.287
Осмоловский В. Г. Квазивыпуклая оболочка для однородной изотропной двухфазовой упругой среды и решения исходной и релаксированной задачи. Проблемы мат. анализа 70, 161–170 (2013).
Осмоловский В. Г. Математические вопросы теории фазовых переходов в механике сплошных сред (2014). Препринт Санкт-Петербургского математического общества. 2014-04. http://www.mathsoc.spb.ru/preprint/
Allaire G. Shape optimization by the homogenization method. Vol. 146 (2002). Оf Applied Mathematical Sciences. New York, Springer-Verlag. https://doi.org/10.1007/978-1-4684-9286-6
Osmolovskij V.G. Phase transition in the mechanics of continuous media for big loading. Math. Nachr. 177, 233–250 (1996). https://doi.org/10.1002/mana.19961770113
Михайлов А.С., Михайлов В.С. Фазовые переходы в многофазовых средах. Проблемы мат. анализа 20, 120–169 (2000).
Михайлов В.С. Задачи о фазовых переходах со специальными ограничениями. Проблемы мат. анализа 23, 30–49 (2002).
Михайлов А.С. Об определении коэффициента поверхностного натяжения в двухфазовых задачах теории упругости при условии несжимаемости или наличии жестких включений. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 51 (3), 24–34 (2006).
Осмоловский В. Г. Квазистационарная задача о фазовых переходах в механике сплошных сред. Одномерный случай. Нулевой коэффициент поверхностного натяжения. Проблемы мат. анализа 82, 99–110 (2015).
Осмоловский В. Г. Поведение решений односторонних вариационных задач о фазовых переходах в механике сплошных сред при больших температурах. Функц. анализ и его прил. 53 (4), 38–51 (2019). https://doi.org/10.4213/faa3650
Осмоловский В. Г. Одномерная задача о фазовых переходах в механике сплошных сред при непостоянной температуре. Записки научных семинаров ПОМИ 508, 134–146 (2021).
Осмоловский В. Г. Математические вопросы теории фазовых переходов в механике сплошных сред. Алгебра и анализ 29 (5), 111–178 (2017).
Apushkinskaya D., Bildhauer M., Fuchs M. Steady states of anisotropic generalized Newtonian fluids. J. Math. Fluid Mech. 7 (2), 261–297 (2005). https://doi.org/10.1007/s00021-004-0118-6
Apushkinskaya D., Fuchs M. Partial regularity for higher order variational problems under anisotropic growth conditions. Ann. Acad. Sci. Fenn. Math. 32 (1), 199–214 (2007).
Апушкинская Д.Е., Билдгауэр М., Фукс М. Внутренние оценки градиента функции, локально минимизирующей вариационный интеграл при нестандартных условиях роста. Проблемы мат. анализа 43, 35–50 (2009).
Апушкинская Д.Е., Билдгауэр М., Фукс М. О локальном обобщенном решении и локальном тензоре напряжений вариационной задачи с интеграндом линейного роста. Проблемы мат. анализа 44, 39–54 (2010).
FuchsM., Osmolovski V. Variational integrals on Orlicz-Sobolev spaces. Z. Anal. Anwendungen 17 (2), 393–415 (1998). https://doi.org/10.4171/ZAA/829
Gidas B., NiW. M., Nirenberg L. Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68 (3), 209–243 (1979).
Александров А.Д. Теоремы единственности для поверхностей «в целом». V. Вестник Ленинградского университета. Сер. 1. Математика. Механика. Астрономия 3, 19 (4), 5–8 (1958).
Похожаев С.И. О собственных функциях уравнения Δu+λf(u) = 0. Доклады Академии наук СССР 165 (1), 36–39 (1965).
Coffman C.V. A nonlinear boundary value problem with many positive solutions. J. Differential Equations 54 (3), 429–437 (1984). https://doi.org/10.1016/0022-0396(84)90153-0
Назаров А.И. О решениях задачи Дирихле для уравнения, включающего p-лапласиан, в сферическом слое. Труды СПбМО 10, 33–62 (2004).
Щеглова А.П. Множественность решений одной краевой задачи с нелинейным условием Неймана. Проблемы мат. анализа 30, 121–144 (2005).
Колоницкий С. Б., Назаров А.И. Множественность решений задачи Дирихле для обобщенного уравнения Хенона. Проблемы мат. анализа 35, 91–110 (2007).
Колоницкий С. Б. Множественность решений задачи Дирихле для уравнения с p-лапласианом в трехмерном сферическом слое. Алгебра и анализ 22 (3), 206–221 (2010).
Колоницкий С. Б. Множественность концентрирующихся на кривых положительных решений задачи Дирихле для уравнения с p-лапласианом. Функц. анализ и его прил. 49 (2), 88–92 (2015). https://doi.org/10.4213/faa3193
Енин А.И., Назаров А.И. Множественность решений квазилинейной задачи Неймана в трехмерном случае. Проблемы мат. анализа 78, 85–94 (2015).
Назаров А.И., Нетеребский Б. О. Множественность положительных решений квазилинейного уравнения, порождаемого неравенством Ильина—Каффарелли—Кона—Ниренберга. Записки научных семинаров ПОМИ 444, 98–109 (2016).
Enin A. Multiplicity of positive solutions for a critical quasilinear Neumann problem. Arch. Math. 109 (3), 263–272 (2017). https://doi.org/10.1007/s00013-017-1064-x
Щеглова А.П. Задача Неймана для обобщенного уравнения Хенона. Проблемы мат. анализа 95, 103–114 (2018).
Lerman L.M., Naryshkin P. E., Nazarov A. I. Abundance of entire solutions to nonlinear elliptic equations by the variational method. Nonlinear Anal. 190, 111590 (2020). https://doi.org/10.1016/j.na.2019.111590
Буслаев А.П., Кондратьев В.А., Назаров А.И. Об одном семействе экстремальных задач и связанных с ним свойствах одного интеграла. Матем. заметки 64 (6), 830–838 (1998).
Назаров А.И. О точной константе в обобщенном неравенстве Пуанкаре. Проблемы мат. анализа 24, 155–180 (2002).
Герасимов И.В., Назаров А.И. О точной константе в трехпараметрическом неравенстве Пуанкаре. Проблемы мат. анализа 61, 69–86 (2011).
Назаров А.И. Об «одномерности» экстремали в неравенстве Пуанкаре на квадрате. Записки научных семинаров ПОМИ 259, 167–181 (1999).
Назаров А.И. Об «одномерности» экстремали в неравенстве Фридрихса для сферического и плоского слоя. Проблемы мат. анализа 20, 171–190 (2000).
Назаров А.И. О симметричности экстремали в весовой теореме вложения. Проблемы мат. анализа 23, 50–55 (2001).
Назаров А.И., Щеглова А.П. О некоторых свойствах экстремали в вариационной задаче, порожденной теоремой вложения Соболева. Проблемы мат. анализа 27, 109–136 (2004).
Щеглова А.П. Задача Неймана для полулинейного эллиптического уравнения в тонком цилиндре. Решения с наименьшей энергией. Записки научных семинаров ПОМИ 348, 272–302 (2007).
Мукосеева Е.В., Назаров А.И. О симметрии экстремали в некоторых теоремах вложения. Записки научных семинаров ПОМИ 425, 35–5. (2014). Исправление: Записки научных семинаров ПОМИ 489, 225 (2020).
Nazarov A. I., Shcheglova A. P. Steklov-type 1D inequalities (a survey). (2021). arxiv: math.AP/2101.10752v1
Назаров А.И. О собственных функциях одной задачи Штурма—Лиувилля, связанной с обобщенными синусами Ляпунова. Дифференц. уравнения 36 (7), 1000 (2000).
Назаров А.И. О точных константах в одномерных теоремах вложения произвольного порядка. Вопросы современной теории аппроксимации, 146–158 (2004).
Назаров А.И., Петрова А.Н. О точных константах в некоторых теоремах вложения высокого порядка. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 53 (4), 16–20 (2008).
Nazarov A. I., Repin S. I. Exact constants in Poincare type inequalities for functions with zero mean boundary traces. Math. Methods Appl. Sci. 38 (15), 3195–3207 (2015). https://doi.org/10.1002/mma
Назаров А.И., Устинов Н.С. Об одном обобщении неравенства Харди. Записки научных семинаров ПОМИ 477, 112–118 (2018).
Nazarov A. I., Shcheglova A.P. On the sharp constant in the “magnetic” 1D embedding theorem. Russ. J. Math. Phys. 25 (1), 67–72 (2018). https://doi.org/10.1134/S1061920818010065
Musina R., Nazarov A. I. A weighted estimate for generalized harmonic extensions. Math. Inequal. Appl. 23 (2), 419–424 (2020). https://doi.org/10.7153/mia-2020-23-32
Cora G., Musina R., Nazarov A. I. Hardy type inequalities with mixed weights in cones (2023). arxiv: math.AP/2305.05034v1.
Kuznetsov N., Nazarov A. Sharp constants in the Poincare, Steklov and related inequalities (a survey). Mathematika 61 (2), 328–344 (2015). https://doi.org/10.1112/S0025579314000229
Банкевич С.В., Назаров А.И. Об обобщении неравенства Пойа—Сеге для одномерных функционалов. Доклады РАН 438 (1), 11–13 (2011).
Bankevich S.V., Nazarov A. I. On monotonicity of some functionals under rearrangements. Calc. Var. Partial Differential Equations 53 (3–4), 627–647 (2015). https://doi.org/10.1007/s00526-014-0761-6
Банкевич С. В. О монотонности некоторых функционалов при монотонной перестановке по одной переменной. Записки научных семинаров ПОМИ 444, 5–14 (2016).
Банкевич С. В. О неравенстве Пойи—Сегё для функционалов с переменным показателем суммирования. Функц. анализ и его прил. 52 (1), 56–60 (2018). https://doi.org/10.4213/faa3523
Bankevich S.V., Nazarov A. I. On monotonicity of some functionals with variable exponent under symmetrisation. Appl. Anal. 98 (1–2), 362–373 (2019). https://doi.org/10.1080/00036811.2018.1437420
Назаров А.И. Неравенства Харди—Соболева в конусе. Проблемы мат. анализа 31, 39–46 (2005).
Демьянов А. В., Назаров А.И. О существовании экстремальной функции в теоремах вложения Соболева с предельным показателем. Алгебра и анализ 17 (5), 105–140 (2005).
Демьянов А. В., Назаров А.И. О разрешимости задачи Дирихле для полулинейного уравнения Шрёдингера с сингулярным потенциалом. Записки научных семинаров ПОМИ 336, 25–45 (2006).
Nazarov A., Reznikov A. Attainability of infima in the critical Sobolev trace embedding theorem on manifolds. Nonlinear partial differential equations and related topics. Amer. Math. Soc., Providence, RI 229 of Amer. Math. Soc. Transl. Ser. 2, 197–210 (2010). https://doi.org/10.1090/trans2/229/12
Nazarov A. I., Reznikov A.B. On the existence of an extremal function in critical Sobolev trace embedding theorem. J. Funct. Anal. 258 (11), 3906–3921 (2010). https://doi.org/10.1016/j.jfa.2010.02.018
Назаров А.И. Неравенства Харди—Соболева для следов в конусе. Алгебра и анализ 22 (6), 200–213 (2010).
Nazarov A. I. On the Dirichlet problem generated by the Maz’ya-Sobolev inequality. Calc. Var. Partial Differential Equations 49 (1–2), 369–389 (2014). https://doi.org/10.1007/s00526-012-0586-0
Nazarov A. I. Dirichlet and Neumann problems to critical Emden-Fowler type equations. J. Global Optim. 40 (1–3), 289–303 (2008). https://doi.org/10.1007/s10898-007-9193-6
Назаров А.И., Никитин Я.Ю. Некоторые экстремальные задачи для гауссовых и эмпирических случайных полей. Труды СПбМО. Т. 8. Новосибирск, Научная книга (2000).
Lifshits M., Nazarov A., Nikitin Ya. Tail behavior of anisotropic norms for Gaussian random fields. C.R. Math. Acad. Sci. Paris. 336 (1), 85–88 (2003). https://doi.org/10.1016/S1631-073X(02)00013-4
Назаров А.И., Чирина А. В. О доступной локальной асимптотической эффективности некоторых критериев согласия. Записки научных семинаров ПОМИ 501, 218–235 (2021).
Musina R., Nazarov A. I. On fractional Laplacians. Comm. Partial Differential Equations 39 (9), 1780–1790 (2014). https://doi.org/10.1080/03605302.2013.864304
Musina R., Nazarov A. I. On fractional Laplacians — 2. Ann. Inst. H. Poincare Anal. Non Lineaire 33 (6), 1667–1673 (2016). https://doi.org/10.1016/j.anihpc.2015.08.001
Musina R., Nazarov A. I. On fractional Laplacians — 3. ESAIM Control Optim. Calc. Var. 22 (3), 832–841 (2016). https://doi.org/10.1051/cocv/2015032
Musina R., Nazarov A. I. Strong maximum principles for fractional Laplacians. Proc. Roy. Soc. Edinburgh Sect. A. 149 (5), 1223–1240 (2019). https://doi.org/10.1017/prm.2018.81
Musina R., Nazarov A. I. A note on truncations in fractional Sobolev spaces. Bull. Math. Sci. 9 (1), 1950001, 7 (2019). https://doi.org/10.1142/S1664360719500012
Musina R., Nazarov A. I. A note on higher order fractional Hardy—Sobolev inequalities. Nonlinear Anal. 203, 112168, 3 (2021). https://doi.org/10.1016/j.na.2020.112168
Musina R., Nazarov A. I. Fractional operators as traces of operator-valued curves (2022). arxiv: math.AP/2208.06873v1
Nazarov A. I. On comparison of fractional Laplacians. Nonlinear Anal. 218, 112790 (2022). https://doi.org/10.1016/j.na.2022.112790
Musina R., Nazarov A. I. Non-critical dimensions for critical problems involving fractional Laplacians. Rev. Mat. Iberoam. 32 (1), 257–266 (2016). https://doi.org/10.4171/RMI/885
Musina R., Nazarov A. I., Sreenadh K. Variational inequalities for the fractional Laplacian. Potential Anal. 46 (3), 485–498 (2017). https://doi.org/10.1007/s11118-016-9591-9
Musina R., Nazarov A. I. Variational inequalities for the spectral fractional Laplacian. Comp. Math. and Math. Phys. 57 (3), 373–386 (2017). https://doi.org/10.1134/S0965542517030113
Musina R., Nazarov A. I. A tool for symmetry breaking and multiplicity in some nonlocal problems. Math. Methods Appl. Sci. 43 (16), 9345–9357 (2020). https://doi.org/10.1002/mma.6220
Musina R., Nazarov A. I. Complete classification and nondegeneracy of minimizers for the fractional Hardy-Sobolev inequality, and applications. J. Differential Equations 280, 292–314 (2021). https://doi.org/10.1016/j.jde.2021.01.022
Musina R., Nazarov A. I. On the Sobolev and Hardy constants for the fractional Navier Laplacian. Nonlinear Anal. 121, 123–129 (2015). https://doi.org/10.1016/j.na.2014.09.021
Musina R., Nazarov A. I. Fractional Hardy-Sobolev inequalities on half spaces. Nonlinear Anal. 178, 32–40 (2019). https://doi.org/10.1016/j.na.2018.07.002
Musina R., Nazarov A. I. Sobolev inequalities for fractional Neumann Laplacians on half spaces. Adv. Calc. Var. 14 (1), 127–145 (2021). https://doi.org/10.1515/acv-2018-0020
Устинов Н.С. Множественность решений краевых задач с дробными лапласианами Дирихле и Навье. Записки научных семинаров ПОМИ 459, 104–126 (2017).
Устинов Н.С. О достижимости точных констант в дробных неравенствах Харди—Соболева со спектральным лапласианом Дирихле. Функц. анализ и его прил. 53 (4), 93–98 (2019). https://doi.org/10.4213/faa3673
Ustinov N. The effect of curvature in fractional Hardy—Sobolev inequality involving the spectral Dirichlet Laplacian. Trans. Amer. Math. Soc. 373 (11), 7785–7815 (2020). https://doi.org/10.1090/tran/8124
Устинов Н.С. О постоянстве экстремали в теореме вложения дробного порядка. Функц. анализ и его прил. 54 (4), 85–97 (2020). https://doi.org/10.4213/faa3828
Щеглова А.П. Множественность положительных решений для обобщенного уравнения Хенона c дробным лапласианом. Записки научных семинаров ПОМИ 489, 207–224 (2020).
Назаров А.И., Щеглова А.П. Новые классы решений для полулинейных уравнений Rn в с дробным лапласианом. Записки научных семинаров ПОМИ 508, 124–133 (2021).
Устинов Н.С. О разрешимости полулинейной задачи со спектральным дробным лапласианом Неймана и критической правой частью. Алгебра и анализ 33 (1), 194–212 (2021).
Nazarov A. I., Shcheglova A.P. Solutions with various structures for semilinear equations in Rn driven by fractional Laplacian. Calc. Var. Partial Differential Equations 62 (4), 112, 31 (2023). https://doi.org/10.1007/s00526-023-02453-2
References
Smirnov V. I. (ed.). Mathematics at Petersburg—Leningrad University. Leningrad, Leningrad University Press (1970). (In Russian)
Apushkinskaya D.E., Nazarov A. I. 75 years of the V. I. Smirnov seminar. Zapiski nauchnykh seminarov POMI 519, 5–9 (2022). (In Russian)
Sobolev S. L. Nekotorye primeneniia funktsional’nogo analiza v matematicheskoi fizike. Leningrad, Leningrad University Press (1950). (In Russian) [Eng. transl.: Sobolev S. L. Applications of functional analysis in mathematical physics. In: Translations of Mathematical Monographs. Vol.7. AMS (1963)].
Ladyzhenskaya O.A. Matematicheskie voprosy dinamiki viazkoi neszhimaemoi zhidkosti. Moscow, Fizmatlit Publ. (1961). (In Russian) [Eng. transl.: Ladyzhenskaya O.A. The mathematical theory of viscous incompressible flow. New York, Gordon and Breach Sci. Publ., 1963].
Seregin G.A., Uraltseva N.N. Olga Aleksandrovna Ladyzhenskaya (on the occasion of her eightieth birthday). Uspekhi mat. nauk 58, 2 (350), 181–206 (2003). https://doi.org/10.4213/rm626 (In Russian) [Eng. transl.: Russian Math. Surveys 58 (2), 395–425 (2003). https://doi.org/10.1070/RM2003v058n02ABEH000626].
Ladyzhenskaya O.A. The first boundary problem for quasilinear parabolic equations. Doklady Akademii nauk SSSR 107, 636–639 (1956). (In Russian)
De Giorgi E. Sulla differenziabilit‘a e l’analiticit‘a delle estremali degli integrali multipli regolari. Mem. Accad. Sci. 3, 25–43 (1957).
Nash J. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 931–954 (1958). https://doi.org/10.2307/2372841.
Maz’ya V.G. Examples of nonregular solutions of quasilinear elliptic equations with analytic coefficients. Funkts. Anal. Prilozh. 2 (3), 53–57 (1968) (In Russian) [Eng. transl.: Funct. Anal. Appl. 2 (3), 230–234 (1997). https://doi.org/10.1007/BF01076124].
De Giorgi E. Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. Ital. (4) 1, 135–137 (1968).
Giusti E., Miranda M. Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni. Boll. Un. Mat. Ital. 4 (1), 219–226 (1968).
Ladyzhenskaya O. A., Uraltseva N. N. Lineinye i kvazilineinye uravneniya ellipticheskogo tipa. Moscow, Nauka Publ. (1964). (In Russian) [Eng. transl.: Ladyzhenskaya O.A., Uraltseva N.N. Linear and quasilinear elliptic equations. In: Math. Sci. Eng., vol. 46. Amsterdam, Elsevier (1968)].
Ladyzhenskaya O. A., Uraltseva N. N. Linear and quasilinear elliptic equations. 2nd ed., Moscow, Nauka Publ. (1973). (In Russian)
Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N. Lineinye i nelineinye uravneniia parabolicheskogo tipa. Moscow, Nauka Publ. (1967). (In Russian) [Eng. transl.: Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N. Linear and quasilinear equations of parabolic type. In: Translations of Mathematical Monographs, vol. 23. AMS (1968)].
Denisova I.V., Ladyzhenskaya O.A., Seregin G.A., Uraltseva N.N., Frolova E.V. To the jubilee of Vsevolod Alekseevich Solonnikov Zapiski nauchnykh seminarov POMI 306, 7–15 (2003). (In Russian) [Eng. transl.: J. Math. Sci. 130 (4), 4775–4779 (2005). https://doi.org/10.1007/s10958-005-0375-9].
Denisova I.V., Pileckas K. I., Repin S. I., Seregin G. A., Uraltseva N. N., Frolova E. V. To the 75th birthday of Vsevolod Alekseevich Solonnikov. Zapiski nauchnykh seminarov POMI 362, 5–14 (2008). (In Russian) [Eng. transl.: J. Math. Sci. 159 (A204), 385–390 (2009). https://doi.org/10.1007/s10958-009-9451-x].
The Maz’ya anniversary collection. Vol. 1: On Maz’ya’s work in functional analysis, partial differential equations and applications. Based on talks given at the conference. Rostock, Germany. August 31 — September 4, 1998, Rossmann J., Takˇac P., Wildenhain G. Birkh¨auser (ed.), Basel. Vol. 109 of Oper. Theory Adv. Appl. (1999).
Agranovich M. S., Burago Yu.D., Vainberg B. R., Vishik M. I., Gindikin S.G., Kondrat’ev V.A., Maslov V. P., Poborchii S.V., Reshetnyak Yu. G., Khavin V. P., Shubin M.A. Vladimir Gilelevich Maz’ya (to his 70th birthday). Uspekhi Mat. Nauk 63, 1 (379), 183–189 (2008). https://doi.org/10.4213/rm9127 (In Russian) [Eng. transl.: Russian Math. Surveys 63 (1), 189–196 (2008) https://doi.org/10.1070/RM2008v063n01ABEH004511].
Anolik M. V., Burago Yu.D., Dem’yanovich Yu.K., Kislyakov S.V., Khavin V.P., Leonov G.A., Morozov N.F., Poborchii S.V., Uraltseva N.N., Shirokov N.A. Vladimir Gilelevich Maz’ya: On the occasion of his 70th anniversary. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 53 (4), 3–6 (2008). (In Russian) [Eng. transl.: Vestnik St Petersburg University. Mathematics 41 (4), 287–289 (2008). https://doi.org/10.3103/S1063454108040018].
Anolik M. V., Apushkinskaya D., Arkhipova A.A., Burago Yu.D., Dem’yanovich Yu.K., Ibragimov I.A., Kislyakov S.V., Leonov G.A., Mishuris G., Movchan A., Morozov N. F., Nazarov A. I., Nieves M., Romanovsky J.V., Slepyan L., Slisenko A.O., Solonnikov V.A., Uraltseva N.N On the anniversary of Vladimir Gilelevich Maz’ya. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 5 (63), iss. 3, 524–526 (2018). (In Russian)
Uraltseva N. N. Degenerate quasilinear elliptic systems. Zapiski nauchnykh seminarov LOMI 7, 184–222 (1968). (In Russian)
Bombieri E., De Giorgi E., Miranda M. Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche. Arch. Rational Mech. Anal. 32, 255–267 (1969). https://doi.org/10.1007/BF00281503
Ladyzhenskaya O.A., Uraltseva N.N. Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations. Comm. Pure Appl. Math. 23, 677–703 (1970). https://doi.org/10.1002/cpa.3160230409
Ladyzhenskaya O., Uraltseva N.N. Local gradient estimates for solutions of a simplest regularization of a class of nonuniformly elliptic equations. Zapiski nauchnykh seminarov POMI 213, 75–92 (1994). (In Russian) [Eng. transl.: J. Math. Sci. 84 (1), 862–872 (1997). https://doi.org/10.1007/BF02399938].
Uraltseva N. N. The solvability of the capillarity problem. Vestnik of Leningrad University. Mathematics. Mechanics. Astronomy 18, 1 (4), 54–64 (1973). (In Russian) [Eng. transl.: Vestnik Leningrad University. Mathematics 6, 363–375 (1979)].
Uraltseva N. N. The solvability of the capillarity problem. Р. II. Vestnik of Leningrad University. Mathematics. Mechanics. Astronomy 20 1 (1), 143–149 (1975). (In Russian) [Eng. transl.: Vestnik Leningrad University. Mathematics 8, 151–158 (1980)].
Uraltseva N.N. Estimates for the maxima of the moduli of the gradients for solutions of capillarity problems. Zapiski nauchnykh seminarov LOMI 115, 274–284 (1982). (In Russian) [Eng. transl.: J. Soviet Math. 28, 806–813 (1985)].
Uraltseva N.N., Urdaletova A.B. Boundedness of gradients of generalized solutions of degenerate nonuniformly elliptic quasilinear equations. Vestnik of Leningrad University. Mathematics. Mechanics. Astronomy 28, 19 (4), 50–56 (1983). (In Russian) [Eng. transl.: Vestnik Leningrad University Mathematics 16, 263–270 (1984)].
Baroni P., Colombo G., Mingione G. Nonautonomous functionals, borderline cases and related function classes. Algebra i analiz 27 (3), 118–151 (2015) [See also: St.Petersburg Math J. 27 (3), 347–379 (2016). https://doi.org/10.1090/spmj/1392].
De Filippis C., Mingione G. A borderline case of Calderon—Zygmund estimates for nonuniformly elliptic problems. Algebra i analiz 31 (3), 82–115 (2019) [See also: St. Petersburg Math J. 31 (3), 455–477 (2020). https://doi.org/10.1090/spmj/1608].
Krylov N.V., Safonov M.V. A certain property of solutions of parabolic equations with measurable coefficients. Izv. Akad. nauk SSSR. Ser. Mat. 44 (1), 161–175 (1980). (In Russian) [Eng. transl.: Math.USSR-Izv. 16 (1), 151–164 (1981). https://doi.org/10.1070/10.1070/IM1981v016n01ABEH001283].
Ladyzhenskaya O. A., Uraltseva N. N. An estimate of the H¨older norm of solutions of quasilinear general elliptic equations of the second order. Zapiski nauchnykh seminarov LOMI 96, 161–168 (1980). (In Russian) [Eng. transl.: J. Soviet Math. 21 (5), 762–768 (1983). https://doi.org/10.1007/BF01094438].
Ladyzhenskaya O. A., Uraltseva N. N. On estimates of max ux for solutions of quasilinear elliptic and parabolic equations of general form and on existence theorems. Zapiski nauchnykh seminarov LOMI 138, 90–107 (1984). (In Russian)
Nazarov A. I., Uraltseva N.N. Convex-monotone hulls and estimation of the maximum of a solution of a parabolic equation. Zapiski nauchnykh seminarov LOMI 147, 95–109 (1985). (In Russian) [Eng. transl.: J. Soviet Math. 37, 851–859 (1987). https://doi.org/10.1007/BF01387723].
Nazarov A. I. The A.D.Aleksandrov maximum principle. Sovremennaia matematika i ee prilozheniia 29, 127–143 (2005). (In Russian) [Eng. transl.: J. Math. Sci. 142 (3), 2154–2171 (2007). https://doi.org/10.1007/s10958-007-0126-1].
Apushkinskaya D.E., Nazarov A. I. The normal derivative lemma and surrounding issues. Uspekhi mat. nauk 77, 2 (464), 3–68 (2022). https://doi.org/10.4213/rm10049 (In Russian) [Eng. transl.: Russian Math. Surveys 77 (2), 189–249 (2022). https://doi.org/10.1070/RM10049].
Ladyzhenskaya O. A., Uraltseva N. N. Estimates of the H¨older constant for functions satisfying a uniformly elliptic or uniformly parabolic quasilinear inequality with unbounded coefficients. Zapiski nauchnykh seminarov LOMI 147, 72–94 (1985). (In Russian)
Ladyzhenskaya O.A., Uraltseva N.N. Estimates on the boundary of the domain of first derivatives of functions satisfying an elliptic or a parabolic inequality. Tr. Mat. inst. Steklov 179, 102–125 (1988). (In Russian) [Eng. transl.: Proc. Steklov Inst. Math. 179 (2), 109–135 (1989)].
Ladyzhenskaya O. A., Uraltseva N. N. A survey of results on the solvability of boundary value problems for uniformly elliptic and parabolic second-order quasilinear equations having unbounded singularities. Uspekhi mat. nauk 41, 5 (251), 59–83 (1986). (In Russian) [Eng. transl.: Russian Math. Surveys 41 (5), 1–31 (1986). https://doi.org/10.1070/RM1986v041n05ABEH003415].
Uraltseva N. N. Estimates of derivatives of solutions of elliptic and parabolic inequalities. Proceedings of the International Congress of Mathematicians. Vol. 1, 2 (Berkeley, Calif., 1986). Amer. Math. Soc., Providence, RI, 1143–1149 (1987).
Nazarov A. I. H¨older estimates for solutions of degenerate nondivergence elliptic and parabolic equations Algebra i analiz 21 (4), 174–195 (2009). (In Russian) [Eng. transl.: St. Petersburg Math. J. 21 (4), 635–650 (2010). https://doi.org/10.1090/S1061-0022-2010-01109-9].
Uraltseva N.N. Gradient estimates for solutions of nonlinear parabolic oblique boundary problem. Geometry and nonlinear partial differential equations (Fayetteville, AR, 1990). Amer. Math. Soc., Providence, RI, Contemp. Math. 119–130 (1992). https://doi.org/10.1090/conm/127/1155414
Nazarov A. I. H¨older estimates for bounded solutions of problems with an oblique derivative for parabolic equations of nondivergence structure. Problemy mat. analiza 11, 37–46 (1990). (In Russian) [Eng. transl.: J. Soviet Math. 64 (6), 1247–1252 (1990). https://doi.org/10.1007/BF01098017].
Uraltseva N.N. A nonlinear problem with an oblique derivative for parabolic equations. Zapiski nauchnykh seminarov POMI 188, 143–158 (1991). (In Russian) [Eng. transl.: J. Math. Sci. 70 (3), 1817–1827 (1994)].
Nazarov A. I., Uraltseva N. N. The oblique boundary-value problem for a quasilinear parabolic equation. Zapiski nauchnykh seminarov LOMI 200, 118–131 (1992). (In Russian) [Eng. transl.: J. Math. Sci. 77 (3), 3212–3220 (1995). https://doi.org/10.1007/BF02364713].
Venttsel’ A.D. On boundary conditions for multidimensional diffusion processes. Teoriia veroiatnostei i ee primenenie 4 (2), 172–185 (1959). (In Russian) [Eng. transl.: Theory Probab. Appl. 4 (2), 164–177 (1959)].
Apushkinskaya D.E. An estimate for the maximum of solutions of parabolic equations with the Venttsel condition. Vestnik of Leningrad University. Mathematics. Mechanics. Astronomy 36, 2 (8), 3–12 (1991). (In Russian) [Eng. transl.: Vestnik Leningrad University, Mathematics 24, 1–11 (1991)].
Apushkinskaya D.E., Nazarov A. I. H¨older estimates of solutions to initial-boundary value problems for parabolic equations of nondivergent form with Wentzel boundary condition. Nonlinear evolution equations. Amer. Math. Soc., Providence, RI 164, 1–13. of Amer. Math. Soc. Transl. Ser. 2 (1995). https://doi.org/10.1090/trans2/164/01
Apushkinskaya D.E., Nazarov A. I. The nonstationary Venttsel problem with quadratic growth with respect to the gradient. Probl. mat. anal. 15, 33–46 (1995). (In Russian) [Eng. transl.: J. Math. Sci. 80 (6), 2197–2207 (1996). https://doi.org/10.1007/BF02362382].
Apushkinskaya D.E., Nazarov A. I. A survey of results on nonlinear Venttsel problems. Appl. Math. 45 (1), 69–80 (2000). https://doi.org/10.1023/A:1022288717033
Luk’yanov V.V., Nazarov A. I. Solving the Venttsel’ problem for the Laplace and Helmholtz equations with the help of iterated potentials. Zapiski nauchnykh seminarov POMI 250, 203–218 (1998). (In Russian) [Eng. transl.: J. Math. Sci. 102 (4), 4265–4274 (1998). https://doi.org/10.1007/BF02673857]. Correction in: Zapiski nauchnykh seminarov POMI 324, 129–130 (2005). (In Russian) [Eng. transl.: J. Math. Sci. 138 (2), 5554 (2006)].
Apushkinskaya D.E., Nazarov A. I. Linear two-phase Venttsel problems. Ark. Mat. 39 (2), 201–222 (2001). https://doi.org/10.1007/BF02384554
Apushkinskaya D.E., Nazarov A. I. Quasilinear elliptic two-phase Venttsel’s problems in the transversal case. Problemy mat. analiza 24, 3–28 (2002). (In Russian) [Eng. transl.: J. Math. Sci. 112 (1), 3927–3943 (2002). https://doi.org/10.1023/A:1020000522010].
Nazarov A. I. On the nonstationary two-phase Venttsel problem in the transversal case. Problemy mat. analiza 2004. no. 28. P. 71–82. (In Russian) [Eng. transl.: J. Math. Sci. 122 (3), 3251–3264(2004). https://doi.org/10.1090/10.1023/B:JOTH.0000031019.56619.4d].
Nazarov A. I., Paletskikh A.A. On the H¨older continuity of solutions of the Venttsel’ elliptic problem. Doklady Akad. nauk 465 (5), 532–536 (2015). https://doi.org/10.7868/S0869565215350066 (In Russian) [Eng. transl.: Doklady Math. 92 (3), 747–751 (2015). https://doi.org/10.1134/S1064562415060307].
Medvedev K.M., Nazarov A. I. H¨older estimates for solutions of divergence type elliptic equations on stratified sets. Algebra i analiz 36 (1), 170–194 (2024). (In Russian)
Mironenko F.D., Nazarov A. I. Local Aleksandrov—Bakelman type maximum estimate for solutions to elliptic equations on a book-type stratified set. Zapiski nauchnykh seminarov POMI 51, 105–113 (2022). (In Russian)
Mironenko F. D. Maximum estimates for solutions to elliptic and parabolic equations on a booktype stratified set. Sibirskii matematicheskii zhurnal 64 (6), 1263–1278 (2023). (In Russian) [Eng. transl.: Sib. Math. J. 64 (6), 1385–1398 (2023)]. (In Russian)
Creo S., Lancia M. R., Nazarov A., Vernole P. On two-dimensional nonlocal Venttsel’ problems in piecewise smooth domains. Discrete Contin. Dyn. Syst. Ser. S 12, (1), 57–64 (2019). https://doi.org/10.3934/dcdss.2019004
Creo S., Lancia M.R., Nazarov A. I. Regularity results for nonlocal evolution Venttsel’ problems. Fract. Calc. Appl. Anal. 23 (5), 1416–1430 (2020). https://doi.org/10.1515/fca-2020-0070
Apushkinskaya D.E., Nazarov A. I., Palagachev D.K., Softova L.G. Elliptic Venttsel problems with VMO coefficients. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31 (2), 391–399 (2020). https://doi.org/10.4171/rlm/896
Apushkinskaya D.E., Nazarov A. I., Palagachev D.K., Softova L.G. Lp-theory of Venttsel BVPs with discontinuous data. Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 98 (2), A1–16 (2020). https://doi.org/10.1478/AAPP.98S2A1
Apushkinskaya D.E., Nazarov A. I., Palagachev D.K., Softova L.G. Venttsel boundary value problems with discontinuous data. SIAM J. Math. Anal. 53 (1), 221–252 (2021). https://doi.org/10.1137/19M1286839
Apushkinskaya D.E., Nazarov A. I., Palagachev D.K., Softova L.G. Nonstationary Venttselproblem with VMOx leading coefficients. Doklady RAS. 510, 13–17 (2023). https://doi.org/10.31857/S2686954322600707 (In Russian) [Eng. transl.: Doklady Math. 107 (2), 97–100 (2023). https://doi.org/10.1134/S1064562423700679].
Apushkinskaya D. E., Nazarov A. I., Palagachev D.K., Softova L.G. Quasilinear parabolic Venttsel problem with discontinuous principal coefficients. Funkts. anal. prilozh. 57 (2), 93–99 (2023). (In Russian). https://doi.org/110.4213/faa4098
Apushkinskaya D.E., Nazarov A. I., Palagachev D.K., Softova L.G. Nonstationary Venttsel problems with discontinuous data. J. Diff. Equations 375, 538–566 (2023). https://doi.org/10.1016/j.jde.2023.08.024
Apushkinskaya D.E., Nazarov A. I. Boundary estimates for the first-order derivatives of a solution to a nondivergent parabolic equation with composite right-hand side and coefficients of lowerorder derivatives. Probl. mat. anal. 14, 3–27 (1995). (In Russian) [Eng. transl.: J. Math. Sci. 77 (4), 3257–3276 (1995). https://doi.org/10.1007/BF02364860].
Apushkinskaya D.E., Nazarov A. I. The Dirichlet problem for quasilinear elliptic equations in domains with smooth closed edges. Probl. mat. anal. 21, 3–29 (2000). (In Russian) [Eng. transl.: J. Math. Sci. 105 (5), 2299–2318 (2001). https://doi.org/10.1023/A:1011362311390].
Nazarov A. I. Estimates of the maximum for solutions of elliptic and parabolic equations in terms of weighted norms of the right-hand side. Algebra i analiz 13 (2), 151–164 (2001). (In Russian) [Eng. transl.: St. Petersburg Math. J. 13 (2), 269–279 (2002). https://doi.org/10.1090/S1061-0022-07-00951-X].
Nazarov A. I. Lp-estimates for a solution to the Dirichlet problem and to the Neumann problem for the heat equation in a wedge with edge of arbitrary codimension. Probl. mat. anal. 22, 126–159 (2001). (In Russian) [Eng. transl.: J. Math. Sci. 106 (3), 2989–3014 (2001). https://doi.org/10.1023/A:1011319521775].
Kozlov V., Nazarov A. The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients. Math. Nachr. 282 (9), 1220–1241 (2009). https://doi.org/10.1002/mana.200910796
Kozlov V., Nazarov A. The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge. Math. Nachr. 287 (10), 1142–1165 (2014). https://doi.org/10.1002/mana.201100352
Kozlov V., Nazarov A. Oblique derivative problem for non-divergence parabolic equations with time-discontinuous coefficients. Proceedings of the St. Petersburg Mathematical Society. Vol. XV. Advances in mathematical analysis of partial differential equations. Amer. Math. Soc., Providence, RI. Vol. 232. Оf Amer. Math. Soc. Transl. Ser. 2, 177–191 (2014). https://doi.org/10.1090/trans2/232/10
Kozlov V., Nazarov A. Oblique derivative problem for non-divergence parabolic equations with time-discontinuous coefficients in a wedge. J. Math. Anal. Appl. 435 (1), 210–228 (2016). https://doi.org/10.1016/j.jmaa.2015.10.029
Nazarov A. I., Uraltseva N. N. The Harnack inequality and related properties for solutions of elliptic and parabolic equations with divergence-free lower-order coefficients. Algebra i analiz 23 (1), 136–168 (2011). (In Russian) [Eng. transl.: St. Petersburg Math. J. 23 (1), 93–115 (2012). https://doi.org/10.1090/S1061-0022-2011-01188-4].
Nazarov A. I. A centennial of the Zaremba—Hopf—Oleinik lemma. SIAM J. Math. Anal. 44 (1), 437–453 (2012). https://doi.org/10.1137/110821664
Apushkinskaya D.E., Nazarov A. I. A counterexample to the Hopf — Oleinik lemma (elliptic case). Anal. PDE 9 (2), 439–458. 2016. https://doi.org/10.2140/apde.2016.9.439
Apushkinskaya D.E., Nazarov A. I. On the boundary point principle for divergencetype equations. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30 (4), 677–699 (2019). https://doi.org/10.4171/RLM/867
Ibraguimov A., Nazarov A. I. On Phragmen—Lindel¨of principle for non-divergence type elliptic equations and mixed boundary conditions. Mat. Fiz. Komp’yut. Model. 3 (40), 65–76 (2017). https://doi.org/10.15688/mpcm.jvolsu.2017.3.5
Cao D., Ibraguimov A., Nazarov A. I. Mixed boundary value problems for nondivergence type elliptic equations in unbounded domains. Asymptot. Anal. 109 (1–2), 75–90 (2018). https://doi.org/10.3233/asy-181469
Kozlov V., Nazarov A. A comparison theorem for nonsmooth nonlinear operators. Potentia Anal. 54 (3), 471–481 (2021). https://doi.org/10.1007/s11118-020-09834-8
Arkhipova A.A. Smoothness of solutions of problems with an obstacle. Zapiski nauchnykh seminarov LOMI 38, 7–9 (1973). (In Russian) [Eng. transl.: J. Soviet Math. 8, 351–353 (1977). https://doi.org/10.1070/IM1973v007n05ABEH00200].
Arkhipova A.A. On least supersolutions for a problem with an obstacle. Izv. Akad. nauk SSSR. Ser. Mat. 37 (5), 1155–1185 (1973). (In Russian) [Eng. transl.: Math. USSR-Izv. 7, 1153–1183 (1975). https://doi.org/10.1070/IM1973v007n05ABEH002000].
Arkhipova A. A. The problem with discontinuous obstacle for uniformly elliptic equations. Vestnik of Leningrad University. Mathematics. Mechanics. Astronomy. 19, 4 (19), 154–155 (1974). (In Russian)
Arkhipova A.A. On limiting smoothness of the solution of a problem with a two-sided barrier. Vestnik of Leningrad University. Mathematics. Mechanics. Astronomy 29, 2 (7), 7–9 (1984). (In Russian) [Eng. transl.: Vestnik Leningrad University Mathematics 17 (2), 1–6 (1984)].
Uraltseva N.N. Strong solutions of the generalized Signorini problem. Sibirskii matematicheskii zhurnal 19 (5), 1204–1212 (1978). (In Russian) [Eng. transl.: Sib. Math. J. 19 (5), 850–856 (1978)].
Uraltseva N. N. H˚ANolder continuity of the gradients of solutions of parabolic equations under boundary conditions of Signorini type. Dokl. Akad. nauk SSSR 280 (3), 563–565 (1985). (In Russian) [Eng. transl.: Soviet Math. Dokl. 31, 135–138 (1985)].
Arkhipova A. A., Uraltseva N. N. Regularity of the solutions of diagonal elliptic systems under convex constraints on the boundary of the domain. Zapiski nauchnykh seminarov LOMI 152, 5–17 (1986). (In Russian) [Eng. transl.: J. Soviet Math. 40, 591–598 (1988). https://doi.org/10.1007/BF01094182].
Arkhipova A.A., Uraltseva N.N. Limit smoothness of the solutions of variational inequalities under convex constraints on the boundary of the domain. Zapiski nauchnykh seminarov LOMI 163, 5–16 (1987). (In Russian) [Eng. transl.: J. Soviet Math. 49, 1121–1128 (1990). https://doi.org/10.1007/BF02208707].
Arkhipova A. A., Uraltseva N. N. Regularity of the solution of a problem with a two-sided limit on a boundary for elliptic and parabolic equations. Trudy Mat. Inst. Steklov. 179, 5–22 (1988). (In Russian) [Eng. transl.: Proc. Steklov Inst. Math. 179, 1–19 (1989)].
Arkhipova A. A., Uraltseva N. N. On the existence of smooth solutions for parabolic systems with convex constraints on the boundary. Zapiski nauchnykh seminarov LOMI 171, 5–11 (1989). (In Russian) [Eng. transl.: J. Soviet Math. 56 (2), 2281–2285 (1991). https://doi.org/10.1007/BF01671930].
Arkhipova A., Uraltseva N. Sharp estimates for solutions of a parabolic Signorini problem. Math. Nachr. 177, 11–19 (1996). https://doi.org/10.1002/mana.19961770103
Uraltseva N. N. Regularity of solutions of variational inequalities. Uspekhi mat. nauk 42, 6 (258), 151–174 (1987). (In Russian) [Eng. transl.: Russian Math. Surveys. 42 (6), 191–219 (1987). https://doi.org/10.1070/RM1987v042n06ABEH001495].
Apushkinskaya D.E., Repin S. I. Thin obstacle problem: estimates of the distance to the exact solution. Interfaces Free Bound. 20 (4), 511–531 (2018). https://doi.org/10.4171/IFB/410
Apushkinskaya D.E., Repin S. I. Biharmonic obstacle problem: guaranteed and computable error bounds for approximate solutions. J. Comp. Math. Math. Phys. (2020). 60 (11), 1881–1897. https://doi.org/10.31857/S0044466920110034 (In Russian) [Eng. transl.: Comput. Math. Math. Phys. 60 (11), 1823–1838 (2020). https://doi.org/10.1134/S0965542520110032].
Apushkinskaya D., Repin S. Functional a posteriori error estimates for the parabolic obstacle problem. Comput. Methods Appl. Math. 22 (2), 259–276 (2022). https://doi.org/10.1515/cmam-2021-0156
Osmolovskii V. G. Boundary value problems with free surfaces in the theory of phase transitions. Differ. Equ. 53 (13), 1734–1763 (2017). https://doi.org/10.1134/s0012266117130043
Osmolovskii V. G. Independence of temperatures of phase transitions of the domain occupied by a two-phase elastic medium. Probl. mat. anal. 66, 147–152 (2012). (In Russian) [Eng. transl.: J. Math. Sci. 186 (2), 302–306 (2012). https://doi.org/10.1007/s10958-012-0986-x].
Osmolovskii V. G. Computation of phase transition temperatures for anisotropic model of a two phase elastic medium. Probl. mat. anal. 84, 151–160 (2016). (In Russian) [Eng. transl.: J. Math. Sci. 216 (2), 313–324 (2016). https://doi.org/10.1007/s10958-016-2902-2].
Osmolovskii V.G. Exact solutions to the variational problem of the phase transition theory in continuum mechanics. Probl. mat. anal. 27, 171–206 (2004). (In Russian) [Eng. transl.: J. Math. Sci. 120 (2), 1167–1190 (2004). https://doi.org/10.1023/B:JOTH.0000014845.60594.5f].
Osmolovskii V.G. An existence theorem and weak Lagrange equations for a variational problem of the theory of phase transitions. Sib. mat. zh. 35 (4), 835–846 (1994). (In Russian) [Eng. transl.: Sib. Math. J. 35 (4), 743–753 (1994). https://doi.org/10.1007/BF02106618].
Osmolovskii V.G. Isoperimetric inequality and equilibrium states of a two-phase medium. Probl. mat. anal. 36, 81–88 (In Russian). (2007) [Eng. transl.: J. Math. Sci. 150 (1), 1875–1884 (2004). https://doi.org/10.1007/s10958-008-0102-4].
Bildhauer M., Fuchs M., Osmolovskii V. The effect of a surface energy term on the distribution of phases in an elastic medium with a two-well elastic potential. Math. Methods Appl. Sci. 25 (2), 149–178 (2002). https://doi.org/10.1002/mma.282
Osmolovskii V.G. Criterion for the lower semicontinuity of the energy functional of a twophase elastic medium. Probl. Mat. Anal. 26, 215–254 (2003). (In Russian) [Eng. transl.: J. Math. Sci. 117 (3), 4211–4236. (2003). https://doi.org/10.1023/A:1024820721057].
Osmolovskii V.G. Comparison of two methods of consideration of surface energy in problems on phase transitions in large force fields. Probl. mat. anal. 19, 182–192 (1999). (In Russian) [Eng. transl.: J. Math. Sci. 101 (2), 3001–3008. (2000). https://doi.org/10.1007/BF02672183].
Bildhauer M., Fuchs M., Osmolovskii V.G. The effect of a penalty term involving higher order derivatives on the distribution of phases in an elastic medium with a two-well elastic potential. Math. Methods Appl. Sci. 25 (4), 289–308 (2002). https://doi.org/10.1002/mma.287
Osmolovskii V.G. Quasiconvex hull of energy densities in a homogeneous isotropic two-phase elastic medium and solutions of the original and relaxed problems. Probl. mat. anal. 70, 161–170 (2013). (In Russian) [Eng. transl.: J. Math. Sci. 191 (2), 280–290 (2013). https://doi.org/10.1007/s10958-013-1316-7].
Osmolovskii V.G. Mathematical problems of the theory of phase transitions in continuum mechanics. (2014) Preprints of the St. Petersburg Mathematical Society: 2014-04. http://www.mathsoc.spb.ru/preprint/ (In Russian)
Allaire G. Shape optimization by the homogenization method. Vol. 146 (2002). Оf Applied Mathematical Sciences. New York, Springer-Verlag. https://doi.org/10.1007/978-1-4684-9286-6
Osmolovskij V.G. Phase transition in the mechanics of continuous media for big loading. Math. Nachr. 177, 233–250 (1996). https://doi.org/10.1002/mana.19961770113
Mikhailov A. S., Mikhailov V. S. Phase transitions in multi-phase media. Probl. mat. anal. 20, 120–170 (2000). (In Russian) [Eng. transl.: J. Math. Sci. 102 (5), 4436–4472 (2000). https://doi.org/10.1007/BF02672900].
Mikhailov V. S. Problems on phase transitions with special constraints. Probl. mat. anal. 23, 30–49 (In Russian). (2001) [Eng. transl.: J. Math. Sci. 107 (3), 3827–3840 (2001). https://doi.org/10.1023/A:1012384010285].
Mikhailov A. S. On determination of the surface tension coefficient in the two-phase elasticity problems under the assumption of incompressibility or with inflexible inclusions. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 51 (3), 24–34 (2006). (In Russian) [Eng. transl.: Vestnik St Petersburg University. Mathematics 39 (3), 133–141 (2006)].
Osmolovskii V.G. Quasistationary phase transition problem in two-phase media. Onedimensional case. The zero surface stress coefficient. Probl. mat. anal. 82, 99–110 (2015). (In Russian) [Eng. transl.: J. Math. Sci. 210 (5), 664–676 (2015). https://doi.org/10.1007/s10958-015-2585-0].
Osmolovskii V.G. Behavior of the solutions of one-sided variational problems on phase transitions in continuous mechanics at large temperatures. Funkts. anal. prilozh. 53 (4), 38–51 (2019). https://doi.org/10.4213/faa3650 (In Russian) [Eng. transl.: Funct. Anal. Appl. 53 (4), 270–280 (2019). https://doi.org/10.1134/S001626631904004X].
Osmolovskii V.G. One-dimensional problem of phase transitions in the mechanics of a continuous medium at a variable temperature. Zapiski nauchnykh seminarov POMI 508, 134–146 (2021). (In Russian)
Osmolovskii V.G. Mathematical problems in the theory of phase transitions in continuum mechanics. Algebra i analiz 29 (5), 111–178 (2017). (In Russian) [Eng. transl.: St. Petersburg Math. J. 29 (5), 793–839 (2018). https://doi.org/10.1090/spmj/1517].
Apushkinskaya D., Bildhauer M., Fuchs M. Steady states of anisotropic generalized Newtonian fluids. J. Math. Fluid Mech. 7 (2), 261–297 (2005). https://doi.org/10.1007/s00021-004-0118-6
Apushkinskaya D., Fuchs M. Partial regularity for higher order variational problems under anisotropic growth conditions. Ann. Acad. Sci. Fenn. Math. 32 (1), 199–214 (2007).
Apushkinskaya D., Bildhauer M., Fuchs M. Interior gradient bounds for local minimizers of variational integrals under nonstandard growth conditions. Probl. mat. anal. 43, 35–50 (2009). (In Russian) [Eng. transl.: J.Math. Sci. 164 (3), 345–363 (2010). https://doi.org/10.1007/s10958-009-9751-1].
Apushkinskaya D., Bildhauer M., Fuchs M. On local generalized minimizers and local stress tensors for variational problems with linear growth. Probl. mat. anal. 44, 39–54 (2010). (In Russian) [Eng. transl.: J. Math. Sci. 165 (1), 42–59 (2010). https://doi.org/10.1007/s10958-010-9779-2].
FuchsM., Osmolovski V. Variational integrals on Orlicz-Sobolev spaces. Z. Anal. Anwendungen 17 (2), 393–415 (1998). https://doi.org/10.4171/ZAA/829
Gidas B., NiW. M., Nirenberg L. Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68 (3), 209–243 (1979).
Aleksandrov A. D. Uniqueness theorems for surfaces in the large. V. Vestnik of Leningrad University. Mathematics. Mechanics. Astronomy 3, 19 (4), 5–8 (1958). (In Russian) [Eng. transl.: Amer. Math. Soc. Transl. Ser. 2, Vol. 21. Amer. Math. Soc., Providence, RI, 412–416 (1962)].
Pohozaev S. I. On the eigenfunctions of the equation Δu+λf(u) = 0. Dokl. Akad. nauk SSSR 165 (1), 36–39 (1965). (In Russian) [Eng. transl.: Soviet Math. Dokl. 6, 1408–1411 (1965)].
Coffman C.V. A nonlinear boundary value problem with many positive solutions. J. Differential Equations 54 (3), 429–437 (1984). https://doi.org/10.1016/0022-0396(84)90153-0
Nazarov A. I. On solutions to the Dirichlet problem for an equation with p-Laplacian in a spherical layer. Trudy SPbMO 10, 33–62 (2004). (In Russian) [Eng. transl.: Proc. St.Petersburg Math. Soc. Vol. X. Providence, AMS Transl. Ser. 2. Vol. 214, 29–57 (2005). https://doi.org/10.1090/trans2/214/03].
Shcheglova A.P. Multiplicity of solutions to a boundary-value problem with nonlinear Neumann condition. Probl. mat. anal. 30, 121–144 (2005). (In Russian) [Eng. transl.: J. Math. Sci. 128 (5), 3306–3333 (2005). https://doi.org/10.1007/s10958-005-0269-x].
Kolonitskii S.B., Nazarov A. I. Multiplicity of solutions to the Dirichlet problem for generalized Henon equation. Probl. mat. anal. 35, 91–110. (2007). (In Russian) [Eng. transl.: J. Math. Sci. 144 (6), 4624–4644 (2007). https://doi.org/10.1007/s10958-007-0299-7].
Kolonitskii S.B. Multiplicity of solutions of the Dirichlet problem for an equation with the p-Laplacian in a three-dimensional spherical layer. Algebra i analiz 22 (3), 206–221 (2010). (In Russian) [Eng. transl.: St.Petersburg Math. J. 22 (3), 485–495.(2011). https://doi.org/10.1090/S1061-0022-2011-01154-9].
Kolonitskii S.B. Multiplicity of 1D-concentrated positive solutions to the Dirichlet problem for an equation with p-Laplacian. Funkts. anal. prilozh. 49 (2), 88–92 (2015). https://doi.org/10.4213/faa3193 (In Russian) [Eng. transl.: Funct. Anal. Appl. 49 (2), 151–154 (2015). https://doi.org/10.1007/s10688-015-0099-7].
Enin A. I., Nazarov A. I. Multiplicity of solutions to the quasilinear Neumann problem in the 3-Dimensional case. Probl. Mat. Anal. 78, 85–94. (2015). (In Russian) [Eng. transl.: J. Math. Sci. 207 (2), 206–217 (2015). https://doi.org/10.1007/s10958-015-2366-9].
Nazarov A. I., Neterebskii B.O. The multiplicity of positive solutions to a quasilinear equation generated by the Il’in-Caffarelli-Cohn-Nirenberg inequality. Zapiski nauchnykh seminarov POMI 444, 98–109 (2016). (In Russian) [Eng. transl.: J. Math. Sci. 224 (3), 448–455 (2017). https://doi.org/10.1007/s10958-017-3427-z].
Enin A. Multiplicity of positive solutions for a critical quasilinear Neumann problem. Arch. Math. 109 (3), 263–272 (2017). https://doi.org/10.1007/s00013-017-1064-x.
Shcheglova A.P. The Neumann problem for the generalized Henon equation. Probl. Mat. Anal. 95, 103–114 (2018). (In Russian) [Eng. transl.: J. Math. Sci. 128 (5), 360–373 (2018). https://doi.org/10.1007/s10958-018-4078-4].
Lerman L.M., Naryshkin P. E., Nazarov A. I. Abundance of entire solutions to nonlinear elliptic equations by the variational method. Nonlinear Anal. 190, 111590 (2020). https://doi.org/10.1016/j.na.2019.111590
Buslaev A.P., Kondrat’ev V.A., Nazarov A. I. On a family of extremal problems and related properties of an integral. Mat. zametki. 64 (6), 830–838 (1998). (In Russian) [Eng. transl.: Math. Notes 64 (6), 719–725 (1998). https://doi.org/10.1007/BF02313029].
Nazarov A. I. On an exact constant in the generalized Poincar˚ALe inequality. Probl. Mat. Anal. 24, 155–180 (2002). (In Russian) [Eng. transl.: J. Math. Sci. 112 (1), 4029–4047 (2002). https://doi.org/10.1023/A:1020006108806].
Gerasimov I.V., Nazarov A. I. Best constant in a three-parameter Poincare inequality. Probl. Mat. Anal. 61, 69–86 (2011). (In Russian) [Eng. transl.: J. Math. Sci. 179 (1), 80–99 (2007). https://doi.org/10.1007/s10958-011-0583-4].
Nazarov A. I. On the “one-dimensionality” of the extremal for the Poincare inequality in a square. Zapiski nauchnykh seminarov POMI 259, 167–181 (1999). (In Russian) [Eng. transl.: J. Math. Sci. 109 (5), 1928–1939 (2002). https://doi.org/10.1023/A:1014496325564].
Nazarov A. I. The one-dimensional character of an extremum point of the Friedrichs inequality in spherical and plane layers. Probl. Mat. Anal. 20, 171–190 (2000). (In Russian) [Eng. transl.: J. Math. Sci. 102 (5), 4473–4486 (2000). https://doi.org/10.1007/BF02672901].
Nazarov A. I. On the symmetry of extremals in the weight embedding theorem. Probl. Mat. Anal. 23, 50–75 (2001). (In Russian) [Eng. transl.: J. Math. Sci. 107 (3), 3841–3859 (2001). https://doi.org/10.1023/A:1012336127123].
Nazarov A. I., Shcheglova A.P. On some properties of extremals in a variational problem generated by the Sobolev embedding theorem. Probl. Mat. Anal. 27, 109–136 (2004). (In Russian) [Eng. transl.: J. Math. Sci. 120 (2), 1125–1144 (2004). https://doi.org/10.1023/B:JOTH.0000014842.55031.98].
Shcheglova A.P. The Neumann problem for semilinear elliptic equation in thin cylinder. The least energy solutions. Zapiski nauchnykh seminarov POMI 348, 272–302 (2007). (In Russian) [Eng. transl.: J. Math. Sci. 152 (5), 780–798 (2008) https://doi.org/10.1007/s10958-008-9089-0].
Mukoseeva E.V., Nazarov A. I. On the symmetry of the extremal in some embedding theorems. Zapiski nauchnykh seminarov POMI 425, 35–45 (2014). (In Russian) [Eng. transl.: J. Math. Sci. 210 (6), 779–786 (2015). https://doi.org/10.1007/s10958-015-2589-9]. Correction in: Zapiski nauchnykh seminarov POMI 489, 225 (2020). (In Russian) [Eng. transl.: J. Math. Sci. (2022). 260 (1), 155].
Nazarov A. I., Shcheglova A.P. Steklov-type 1D inequalities (a survey) (2021). arxiv: math.AP/2101.10752v1.
Nazarov A. I. The eigenfunctions of a Sturm-Liouville problem related to generalized Lyapunov sines. Differenz. uravneniya 36 (7), 1000 (2000). (In Russian) [Eng. transl.: Differ. Equ. 36 (7), 1112–1113 (2000). https://doi.org/10.1007/BF02754516].
Nazarov A. I. On sharp constants in one-dimensional embedding theorems of arbitrary order. In: Problems of contemporary approximation theory. St. Petersburg, St. Рetersburg University Press 146–158 (2004). (In Russian) [Eng. transl.: arxiv: math.CA/1308.2259v1].
Nazarov A. I., Petrova A.N. On exact constants in some embedding theorems of high order. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 53 (4), 16–20 (2008). (In Russian) [Eng. transl.: Vestnik St. Petersburg University. Mathematics 41 (4), 298–302 (2008). https://doi.org/10.3103/S1063454108040031].
Nazarov A. I., Repin S. I. Exact constants in Poincare type inequalities for functions with zero mean boundary traces. Math. Methods Appl. Sci. 38 (15), 3195–3207 (2015). https://doi.org/10.1002/mma.3290
Nazarov A. I., Ustinov N. S. A generalization of the Hardy inequality. Zapiski nauchnykh seminarov POMI 477, 112–118 (2018). (In Russian) [Eng. transl.: J. Math. Sci. 244 (6), 998–1002 (2020). https://doi.org/10.1007/s10958-020-04669-5].
Nazarov A. I., Shcheglova A.P. On the sharp constant in the “magnetic” 1D embedding theorem. Russ. J. Math. Phys. 25 (1), 67–72 (2018). https://doi.org/10.1134/S1061920818010065
Musina R., Nazarov A. I. A weighted estimate for generalized harmonic extensions. Math. Inequal. Appl. 23 (2), 419–424 (2020). https://doi.org/10.7153/mia-2020-23-32
Cora G., Musina R., Nazarov A. I. Hardy type inequalities with mixed weights in cones (2023). arxiv: math.AP/2305.05034v1.
Kuznetsov N., Nazarov A. Sharp constants in the Poincare, Steklov and related inequalities (a survey). Mathematika 61 (2), 328–344 (2015). https://doi.org/10.1112/S0025579314000229
Bankevich S.V., Nazarov A. I. A generalization of the Polya—Szeg¨o inequality for onedimensional functionals. Doklady Akad. Nauk 438 (1), 11–13 (2011). (In Russian) [Eng. transl.: Doklady Math. 83 (3), 287–289 (2011). https://doi.org/10.1134/S1064562411030021].
Bankevich S.V., Nazarov A. I. On monotonicity of some functionals under rearrangements. Calc. Var. Partial Differential Equations 53 (3–4), 627–647 (2015). https://doi.org/10.1007/s00526-014-0761-6
Bankevich S.V. On monotonicity of some functionals under monotone rearrangement with respect to one variable. Zapiski nauchnykh seminarov POMI 444, 5–14 (2016). (In Russian) [Eng. transl.: J. Math. Sci. 224, 385–390 (2017). https://doi.org/10.1007/s10958-017-3423-3].
Bankevich S.V. On the Polya—Szeg¨o inequality for functionals with variable exponent. Funkts. Anal. Prilozh. 52 (1), 56–60 (2018). https://doi.org/10.4213/faa3523 (In Russian) [Eng. transl.: Funct. Anal. Appl. 52 (1), 45–48 (2018). https://doi.org/10.1007/s10688-018-0205-8].
Bankevich S. V., Nazarov A. I. On monotonicity of some functionals with variable exponent under symmetrisation. Appl.Anal. 98 (1–2), 362–373 (2019). https://doi.org/10.1080/00036811.2018.1437420
Nazarov A. I. Hardy—Sobolev inequalities in a cone. Probl. Mat. Anal. 31, 39–46 (2005). (In Russian) [Eng. transl.: J. Math. Sci. 132 (4), 419–427 (2006). https://doi.org/10.1007/s10958-005-0508-1].
Demyanov A.V., Nazarov A. I. On the existence of an extremal function in Sobolev embedding theorems with limit exponent. Algebra i analyz 17 (5), 105–140 (2005). (In Russian) [Eng. transl.: St. Petersburg Math. J. 17 (5), 773–796 (2006). https://doi.org/10.1090/S1061-0022-06-00929-0].
Demyanov A. V., Nazarov A. I. On the solvability of the Dirichlet problem for the semilinear Schr¨odinger equation with a singular potential. Zapiski nauchnykh seminarov POMI 336, 25–45 (2006). (In Russian) [Eng. transl.: J. Math. Sci. 143 (2), 2857–2868 (2007). https://doi.org/10.1007/s10958-007-0171-9].
Nazarov A., Reznikov A. Attainability of infima in the critical Sobolev trace embedding theorem on manifolds. Nonlinear partial differential equations and related topics. Amer. Math. Soc., Providence, RI 229 of Amer. Math. Soc. Transl. Ser. 2 197–210. (2010). https://doi.org/10.1090/trans2/229/12.
Nazarov A. I., Reznikov A.B. On the existence of an extremal function in critical Sobolev trace embedding theorem. J. Funct. Anal. 258 (11), 3906–3921 (2010). https://doi.org/10.1016/j.jfa.2010.02.018
Nazarov A. I. Trace Hardy—Sobolev inequalities in cones. Algebra i analiz. 22 (6), 200–213 (2010). (In Russian) [Eng. transl.: St. Petersburg Math. J. 22 (6), 997–1006 (2011). https://doi.org/10.1090/S1061-0022-2011-01180-X].
Nazarov A. I. On the Dirichlet problem generated by the Maz’ya-Sobolev inequality. Calc. Var. Partial Differential Equations 49 (1–2), 369–389 (2014). https://doi.org/10.1007/s00526-012-0586-0
Nazarov A. I. Dirichlet and Neumann problems to critical Emden-Fowler type equations. J. Global Optim. 40 (1–3), 289–303 (2008). https://doi.org/10.1007/s10898-007-9193-6
Nazarov A. I., Nikitin Ya.Yu. Some extremal problems for Gaussian and empirical random fields. Trudy SPbMO. Vol. 8. Novosibirsk, Nauchnaya kniga Publ. (2000). (In Russian) [Eng. transl.: St. Petersburg Math. Soc. Vol.VIII. Providence, AMS Transl. Ser. 2. Vol. 205, 189–202 (2002). https://doi.org/10.1090/trans2/205].
Lifshits M., Nazarov A., Nikitin Ya. Tail behavior of anisotropic norms for Gaussian random fields. C.R. Math. Acad. Sci. Paris. 336 (1), 85–88 (2003). https://doi.org/10.1016/S1631-073X(02)00013-4
Nazarov A. I., Tchirina A.V. On the available local asymptotic efficiency of some goodnessof-fit criteria. Zapiski nauchnykh seminarov POMI 501, 218–235 (2021). (In Russian) [Eng. transl.: J. Math. Sci. 273 (5), 804–815 (2023). https://doi.org/10.1007/s10958-023-06543-6].
Musina R., Nazarov A. I. On fractional Laplacians. Comm. Partial Differential Equations 39 (9), 1780–1790 (2014). https://doi.org/10.1080/03605302.2013.864304
Musina R., Nazarov A. I. On fractional Laplacians — 2. Ann. Inst. H. Poincare Anal. Non Lineaire 33 (6), 1667–1673 (2016). https://doi.org/10.1016/j.anihpc.2015.08.001
Musina R., Nazarov A. I. On fractional Laplacians — 3. ESAIM Control Optim. Calc. Var. 22 (3), 832–841 (2016). https://doi.org/10.1051/cocv/2015032
Musina R., Nazarov A. I. Strong maximum principles for fractional Laplacians. Proc. Roy. Soc. Edinburgh Sect. A. 149 (5), 1223–1240 (2019). https://doi.org/10.1017/prm.2018.81
Musina R., Nazarov A. I. A note on truncations in fractional Sobolev spaces. Bull. Math. Sci. 9 (1), 1950001, 7 (2019). https://doi.org/10.1142/S1664360719500012
Musina R., Nazarov A. I. A note on higher order fractional Hardy—Sobolev inequalities. Nonlinear Anal. 203, 112168, 3 (2021). https://doi.org/10.1016/j.na.2020.112168
Musina R., Nazarov A. I. Fractional operators as traces of operator-valued curves (2022). arxiv: math.AP/2208.06873v1
Nazarov A. I. On comparison of fractional Laplacians. Nonlinear Anal. 218, 112790 (2022). https://doi.org/10.1016/j.na.2022.112790
Musina R., Nazarov A. I. Non-critical dimensions for critical problems involving fractional Laplacians. Rev. Mat. Iberoam. 32 (1), 257–266 (2016). https://doi.org/10.4171/RMI/885
Musina R., Nazarov A. I., Sreenadh K. Variational inequalities for the fractional Laplacian. Potential Anal. 46 (3), 485–498 (2017). https://doi.org/10.1007/s11118-016-9591-9
Musina R., Nazarov A. I. Variational inequalities for the spectral fractional Laplacian. Comp. Math. and Math. Phys. 57 (3), 373–386 (2017). https://doi.org/10.1134/S0965542517030113
Musina R., Nazarov A. I. A tool for symmetry breaking and multiplicity in some nonlocal problems. Math. Methods Appl. Sci. 43 (16), 9345–9357 (2020). https://doi.org/10.1002/mma.6220
Musina R., Nazarov A. I. Complete classification and nondegeneracy of minimizers for the fractional Hardy—Sobolev inequality, and applications. J. Differential Equations 280, 292–314 (2021). https://doi.org/10.1016/j.jde.2021.01.022
Musina R., Nazarov A. I. On the Sobolev and Hardy constants for the fractional Navier Laplacian. Nonlinear Anal. 121, 123–129 (2015). https://doi.org/10.1016/j.na.2014.09.021
Musina R., Nazarov A. I. Fractional Hardy-Sobolev inequalities on half spaces. Nonlinear Anal. 178, 32–40 (2019). https://doi.org/10.1016/j.na.2018.07.002
Musina R., Nazarov A. I. Sobolev inequalities for fractional Neumann Laplacians on half spaces. Adv. Calc. Var. 14 (1), 127–145 (2021). https://doi.org/10.1515/acv-2018-0020
Ustinov N. S. Multiplicity of positive solutions to the boundary value problems for fractional Laplacians Zapiski nauchnykh seminarov POMI 459, 104–126 (2017). (In Russian) [Eng. transl.: J. Math. Sci. 236 (4), 446-460 (2019). https://doi.org/10.1007/s10958-018-4124-2].
Ustinov N. S. On the attainability of the best constant in fractional Hardy—Sobolev inequalities involving the spectral Dirichlet Laplacian. Funkts. Anal. Prilozh. 53 (4), 93–98 (2019). https://doi.org/10.4213/faa3673 (In Russian) [Eng. transl.: Funct. Anal. Appl. 53 (4), 317–321 (2019). https://doi.org/10.1134/S0016266319040105].
Ustinov N. The effect of curvature in fractional Hardy—Sobolev inequality involving the spectral Dirichlet Laplacian. Trans. Amer. Math. Soc. 373 (11), 7785–7815 (2020). https://doi.org/10.1090/tran/8124
Ustinov N. S. On the constancy of the extremal function in the embedding theorem of fractional order. Funkts. Anal. Prilozh. 54 (4), 85–97 (2020). https://doi.org/10.4213/faa3828 (In Russian) [Eng. transl.: Funct. Anal. Appl. 54 (4), 295–305 (2020). https://doi.org/10.1134/S0016266320040073].
Shcheglova A.P. Multiplicity of positive solutions for the generalized Henon equation with fractional Laplacian. Zapiski nauchnykh seminarov POMI 489, 207–224 (2020). (In Russian) [Eng. transl.: J. Math. Sci. 260 (1), 142–154 (2022). https://doi.org/10.1007/s10958-021-05678-8].
Nazarov A. I., Shcheglova A.P. New classes of solutions to semilinear equations in Rn with fractional Laplacian. Zapiski nauchnykh seminarov POMI 508, 124–133 (2021). (In Russian)
Ustinov N. S. Solvability of a critical semilinear problem with the spectral Neumann fractional Laplacian. Algebra i analiz 33 (1), 194–212 (2021) (In Russian) [Eng. transl.: St.Petersburg Math. J. 33 (1), 141–153 (2022). https://doi.org/10.1090/spmj/1693].
Nazarov A. I., Shcheglova A.P. Solutions with various structures for semilinear equations in Rn driven by fractional Laplacian. Calc. Var. Partial Differential Equations 62 (4), 112, 31 (2023). https://doi.org/10.1007/s00526-023-02453-2
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.