Extremal problems of Tur´an-type involving the location of all zeros of a class of rational functions

Authors

  • Mohammad Yu. Mir Central University of Kashmir, Ganderbal-191201, India
  • Shah L. Wali Central University of Kashmir, Ganderbal-191201, India
  • Wali M. Shah Central University of Kashmir, Ganderbal-191201, India

DOI:

https://doi.org/10.21638/spbu01.2024.206

Abstract

In this paper, we prove a Tur´an-type inequality for rational functions and thereby extend it to a more general class of rational functions r(s(z)) of degree mn with prescribed poles, where s(z) is a polynomial of degree m. These results not only generalize some Tur´antype inequalities for rational functions, but also improve as well as generalize some known polynomial inequalities.

Keywords:

rational function, polynomials, zeros, polar derivative, inequalities

Downloads

Download data is not yet available.
 

References

Литература

1. Bernstein S. N. Sur la limitation des d´eriv´ees des polynomes. C. R. Acad. Sci. Paris 190, 338-340 (1930).

2. Tur´an P. Uber die ableitung von polynomen. ¨ Compos. Math. 7, 89-95 (1939).

3. Jain V. K. Generalizations of certain well known inequalities for polynomials. Glas. Math. 32, 45-51 (1997).

4. Li X., Mohapatra R. N. Rodriguez R. S. Bernstein-type inequalities for rational functions with prescribed poles. J. London Math. Soc. 51, 523-531 (1995).

5. Mir A. Certain estimates of the derivative of a meromorphic function on boundary of the unit disk, Indian. J. Pure Appl. Math. 50 (2), 315-331 (2019).

6. Mir A. Comparison inequalities between rational functions with prescribed poles. RACSAM. (2021). https://doi.org/10.1007/s13398-021-01023-5

7. Arunrat N., Nakprasit K. M. Bounds of the derivative of some classes of rational functions. Mathematics and Mathematical Sciences 52, 1-7 (2020).

8. Aziz A., Shah W. M. Some refinements of Bernstein- type inequalities for rational functions. Glas. Math. 32, 29-37 (1997).

9. Aziz A., Dawood Q. M. Inequalities for a polynomial and its derivative. Journal of Approximation theory 54, 306-313 (1988).

10. Aziz A., Shah W. M. Some properties of rational functions with prescribed poles and restricted zeros. Math. Balkanica 18, 33-40 (2004).

11. Akhtar T., Malik S. A., Zargar B. A. Tur´an-type inequalities for rational functions with prescribed poles. Int. J. Nonlinear Anal. Appl. 13, 1003-1009 (2022).

12. Markov A. On a problem of D. I. Mendeleev. Zapiski Imperatorskoi Akademii nauk 62, 1-24 (1889).

13. Mir M. Y., Wali S. L., Shah W. M. Inequalities for a class of rational functions. Int. J. Nonlinear Anal. Appl. 13 (2), 609-617

References

1. Bernstein S. N. Sur la limitation des d´eriv´ees des polynomes. C. R. Acad. Sci. Paris 190, 338-340 (1930).

2. Tur´an P. Uber die ableitung von polynomen. ¨ Compos. Math. 7, 89-95 (1939).

3. Jain V. K. Generalizations of certain well known inequalities for polynomials. Glas. Math. 32, 45-51 (1997).

4. Li X., Mohapatra R. N. Rodriguez R. S. Bernstein-type inequalities for rational functions with prescribed poles. J. London Math. Soc. 51, 523-531 (1995).

5. Mir A. Certain estimates of the derivative of a meromorphic function on boundary of the unit disk, Indian. J. Pure Appl. Math. 50 (2), 315-331 (2019).

6. Mir A. Comparison inequalities between rational functions with prescribed poles. RACSAM. (2021). https://doi.org/10.1007/s13398-021-01023-5

7. Arunrat N., Nakprasit K. M. Bounds of the derivative of some classes of rational functions. Mathematics and Mathematical Sciences 52, 1-7 (2020).

8. Aziz A., Shah W. M. Some refinements of Bernstein- type inequalities for rational functions. Glas. Math. 32, 29-37 (1997).

9. Aziz A., Dawood Q. M. Inequalities for a polynomial and its derivative. Journal of Approximation theory 54, 306-313 (1988).

10. Aziz A., Shah W. M. Some properties of rational functions with prescribed poles and restricted zeros. Math. Balkanica 18, 33-40 (2004).

11. Akhtar T., Malik S. A., Zargar B. A. Tur´an-type inequalities for rational functions with prescribed poles. Int. J. Nonlinear Anal. Appl. 13, 1003-1009 (2022).

12. Markov A. On a problem of D. I. Mendeleev. Zapiski Imperatorskoi Akademii nauk 62, 1-24 (1889).

13. Mir M. Y., Wali S. L., Shah W. M. Inequalities for a class of rational functions. Int. J. Nonlinear Anal. Appl. 13 (2), 609-617

Published

2024-08-10

How to Cite

Mir, M. Y., Wali, S. L., & Shah, W. M. (2024). Extremal problems of Tur´an-type involving the location of all zeros of a class of rational functions. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 11(2), 324–331. https://doi.org/10.21638/spbu01.2024.206

Issue

Section

Mathematics