On estimations of generalized Hausdorff dimension

Authors

  • Gennadii A. Leonov St. Petersburg State University, Universitetskaya nab., 7–9, St. Petersburg, 199034, Russian Federation
  • Aleksandr A. Florynskii St. Petersburg State University, Universitetskaya nab., 7–9, St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu01.2019.401

Abstract

The definition of an abstract homogeneous dimensional space with finite index of compactness is given, as well as the definition of Hausdorff — Besicovitch dimensional spectrum of such a space. The possible values of the last one are studied. Also some abstract version of Duady — Oesterle theorem is given.

Keywords:

Hausdorff — Lebesgue measure-like functional, homogeneous dimensional space with finite index of compactnes, Hausdorff — Besicovitch dimensional spectrum

Downloads

Download data is not yet available.
 

References

Литература

Hausdorff F. Dimension und ¨außere Maß // Mathematische Annalen. 1919. Vol. 79. P. 157–179. https://doi.org/10.1007/BF01457179

Boichenko V.A., Leonov G.A., Reitmann V. Dimension Theory for Ordinary Differential Equations. Wiesbaden: Teubner, 2005. https://doi.org/10.1007/978-3-322-80055-8

Leonov G.A. On Estimation of the Hausdorff Dimension of Attractors // Vestnik St. Petersburg University, Mathematics. 1991. Vol. 24, No. 3. P. 41.

Blincherskaya M.A., Ilyashenko Y.S. Estimate for the entropy dimension if the maximal attractor for k-contracting systems in an infinity dimensional space // Russian Journal of Math. Phys. 1999. Vol. 6, No. 1. P. 20–26.

Barreira L., Gelfert K. Dimension estimates in smooth dynamics: a survey of recent results // Ergodic Theory and Dynamical Systems. 2011. Vol. 31, No. 03. P. 641–671. https://doi.org/10.1017/S014338571000012X

Kuznetsov N.V. The Lyapunov dimension and its estimation via the Leonov method // Physics Letters A. 2016. Vol. 380, No. 25–26. P. 2142–2149. https://doi.org/10.1016/j.physleta.2016.04.036

Leonov G.A., Kuznetsov N.V., Korzhemanova N.A., Kusakin D.V. Lyapunov dimension formula for the global attractor of the Lorenz system // Communications in Nonlinear Science and Numerical Simulation. 2016. Vol. 41. P. 84–103. https://doi.org/10.1016/j.cnsns.2016.04.032

Kuznetsov N.V., Alexeeva T.A., Leonov G.A. Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations // Nonlinear Dynamics. 2016. Vol. 85, No. 1. P. 195–201. https://doi.org/10.1007/s11071-016-2678-4

Leonov G.A. Lyapunov functions in the attractors dimension theory // Appl. Math. and Mech. 2012. Vol. 76. P. 129–141. https://doi.org/10.1016/j.jappmathmech.2012.05.002

Leonov G.A. Strange Attractors and Classical Stability Theory. St. Petersburg: St. Petersburg Univ. Press, 2008.

Leonov G.A. Formulas for the Lyapunov dimension of attractors of the generalized Lorenz system // Doklady mathematics. 2013. Vol. 450, No. 1. P. 13–18.

Leonov G.A. Hausdorff — Lebesgue Dimension of Attractors // International Journal of Bifurcations and Chaos. 2017. Vol. 27, No. 10. Art. no. 1750164. https://doi.org/10.1142/S0218127417501644

Besicovitch A.S. On existence of subsets of finite measure of sets of infinite measure // Indagat. muth. 1952. Vol. 14. P. 339–344. https://doi.org/10.1016/S1385-7258(52)50045-3

Rogers C.A. Hausdorff measures. Cambridge University Press, 1998.

Humke P.D., Petruska G. The packing dimension of a typical continuous function is 2 // Real Analysis Exchange. 1988. Vol. 14. P. 345–357. https://doi.org/10.2307/44151950

Hunt B. Maximum local Lyapunov dimension bounds the box dimensions of a chaotic attractors // Nonlinearity. 1996. Vol. 9. P. 845–852. https://doi.org/10.1088/0951-7715/9/4/001

Douady A., Oesterle I. Dimension de Hausdorff des Attractors // C.R. Acad. Sei. Paris. Ser. A. 1980. Vol. 290, No. 24. P. 1135–1138.


References

Hausdorff F., “Dimension und ¨außere Maß”, Mathematische Annalen 79, 157–179 (1919). https://doi.org/10.1007/BF01457179

Boichenko V.A., Leonov G.A., Reitmann V., Dimension Theory for Ordinary Differential Equations, (Teubner, Wiesbaden, 2005). https://doi.org/10.1007/978-3-322-80055-8

Leonov G.A., “On Estimation of the Hausdorff Dimension of Attractors”, Vestnik St. Petersburg University, Mathematics 24(3), 41 (1991).

Blincherskaya M.A., Ilyashenko Y. S., “Estimate for the entropy dimension if the maximal attractor for k-contracting systems in an infinity dimensional space”, Russian Journal of Math. Phys. 6(1), 20–26 (1999).

Barreira L., Gelfert K., “Dimension estimates in smooth dynamics: a survey of recent results”, Ergodic Theory and Dynamical Systems 31(03), 641–671 (2011). https://doi.org/10.1017/S014338571000012X

Kuznetsov N.V., “The Lyapunov dimension and its estimation via the Leonov method”, Physics Letters A 380(25–26), 2142–2149 (2016). https://doi.org/10.1016/j.physleta.2016.04.036

Leonov G.A., Kuznetsov N.V., Korzhemanova N.A., Kusakin D.V., “Lyapunov dimension formula for the global attractor of the Lorenz system”, Communications in Nonlinear Science and Numerical Simulation 41, 84–103 (2016). https://doi.org/10.1016/j.cnsns.2016.04.032

Kuznetsov N.V., Alexeeva T.A., Leonov G.A., “Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations”, Nonlinear Dynamics 85(1), 195–201 (2016). https://doi.org/10.1007/s11071-016-2678-4

Leonov G.A., “Lyapunov functions in the attractors dimension theory”, Appl. Math. and Mech. 76, 129–141 (2012). https://doi.org/10.1016/j.jappmathmech.2012.05.002

Leonov G.A., Strange Attractors and Classical Stability Theory (St. Petersburg Univ. Press, St. Petersburg, 2008).

Leonov G.A., “Formulas for the Lyapunov dimension of attractors of the generalized Lorenz system”, Doklady mathematics 450(1), 13–18 (2013).

Leonov G.A., “Hausdorff — Lebesgue Dimension of Attractors”, International Journal of Bifurcations and Chaos 27(10), 1750164 (2017). https://doi.org/10.1142/S0218127417501644

Besicovitch A. S., “On existence of subsets of finite measure of sets of infinite measure”, Indagat. muth. 14, 339–344 (1952). https://doi.org/10.1016/S1385-7258(52)50045-3

Rogers C.A., Hausdorff measures (Cambridge University Press, 1998).

Humke P.D., Petruska G., “The packing dimension of a typical continuous function is 2”, Real Analysis Exchange 14, 345–357 (1988). https://doi.org/10.2307/44151950

Hunt B., “Maximum local Lyapunov dimension bounds the box dimensions of a chaotic attractors”, Nonlinearity 9, 845–852 (1996). https://doi.org/10.1088/0951-7715/9/4/001

Douady A., Oesterle I., “Dimension de Hausdorff des Attractors”, C.R. Acad. Sei. Paris. Ser. A 290(24), 1135–1138 (1980).

Published

2019-11-28

How to Cite

Leonov, G. A., & Florynskii, A. A. (2019). On estimations of generalized Hausdorff dimension. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 6(4), 534–543. https://doi.org/10.21638/11701/spbu01.2019.401

Issue

Section

In memoriam of G. A. Leonov