Generating extremely multistable systems based on Lurie form systems

Authors

  • Igor M. Burkin Tula State University, Lenina pr., 92, Tula, 300012, Russian Federation
  • Oksana I. Kuznetsova Tula State University, Lenina pr., 92, Tula, 300012, Russian Federation https://orcid.org/0000-0003-1822-4849

DOI:

https://doi.org/10.21638/11701/spbu01.2019.403

Abstract

Chaotic signals and systems are widely used in image encryption, secure communications, weak signal detection and radar systems. In recent years, many researchers have focused on the design of systems that have an infinite number of coexisting chaotic attractors. In this article, we propose some approaches to generating self-reproducing systems with an infinite number of coexisting self-excited or hidden chaotic attractors with the same Lyapunov exponents, based on mathematical models of systems in Lurie form. The proposed approach makes it possible to generate extremely multistable systems, using numerous well-known examples of the existence of chaotic attractors in systems in Lurie form and without resorting to exhaustive computer search. Illustrating the methods proposed in the paper, we construct, in particular, extremely multistable systems with a 1-D and 2-D grid of hidden chaotic attractors using the generalized Chua system, in which the hidden attractors were first discovered by G. А. Leonov and N. V. Kuznetsov.

Keywords:

dynamic system, chaos, coexisting chaotic attractors, Lyapunov exponents, Kaplan — Yorke dimension

Downloads

Download data is not yet available.
 

References

Литература

Guan Z.H., Huang F., Guan W. Chaos-based image encryption algorithm // Phys. Lett. A. 2005. Vol. 346, No. 1–3. P. 153–157. https://doi.org/10.1016/j.physleta.2005.08.006

Gao T., Chen Z. A new image encryption algorithm based on hyper-chaos // Phys. Lett. A. 2008. Vol. 372, No. 4. P. 394–400. https://doi.org/10.1016/j.physleta.2007.07.040

Xie E.Y., Li C., Yu S., Lu J. On the cryptanalysis of Fridrich’s chaotic image encryption scheme // Signal processing. 2017. Vol. 132. P. 150–154. https://doi.org/10.1016/j.sigpro.2016.10.002

Wang S., Kuang J., Li J., Luo Y., Lu H., Hu G. Chaos-based secure communications in a large community // Phys. Rev. E. 2012. Vol. 66. Art. no. 065202R. https://doi.org/10.1103/PhysRevE.66.065202

Wang G., He S. A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators // IEEE Trans. on Circuits Syst.–I: Fund. Theor. Appl. 2003. Vol. 50, No. 7. P. 945–953. https://doi.org/10.1109/TCSI.2003.812606

Liu Z., Zhu X.H., Hu W., Jiang F. Principles of chaotic signal Radar // Int. J. Bifurcation and Chaos. 2007. Vol. 17, No. 5. P. 1735. https://doi.org/10.1142/S0218127407018038

Леонов Г.А. Эффективные методы поиска периодических колебаний в динамических системах // ПММ. 2010. Т. 74, №1. С. 37–73.

Брагин В.О., Вагайцев В.И., Кузнецов Н.В., Леонов Г.А. Алгоритмы поиска скрытых колебаний в нелинейных системах. Проблемы Айзермана, Калмана и цепи Чуа // Известия РАН. Теория и системы управления. 2011. №4. С. 3–36.

Leonov G.A., Kuznetsov N.V., Vagaitsev V.I. Localization of hidden Chua’s attractors // Physics Letters A. 2011. Vol. 375. P. 2230–2233. https://doi.org/10.1016/j.physleta.2011.04.037

Dudkowski D., Jafari S., Kapitaniak T., Kuznetsov N.V., Leonov G.A., Prasad A. Hidden attractors in dynamical systems // Physics Reports. 2016. Vol. 637. P. 1–50. https://doi.org/10.1016/j.physrep.2016.05.002

Burkin I.M., Nguen N.K. Analytical-Numerical Methods of Finding Hidden Oscillations in Multidimensional Dynamical Systems // Diff. Equations. 2014. Vol. 50, No. 13. Р. 1695–1717. https://doi.org/10.1134/S0012266114130023

Буркин И.М. Скрытые аттракторы некоторых мультистабильных систем с бесконечным числом состояний равновесия // Чебышевский сборник. 2017. T. 18(4). C. 18–33.

Li C., Sprott J.C., Hu W., Xu Y. Infinite multistability in a self-reproducing chaotic system // Int J Bifurc. Chaos. 2017. Vol. 27, No. 10. Art. no. 1750160. https://doi.org/10.1142/S0218127417501607

Li C., Sprott J.C., Mei Y. An infinite 2-D lattice of strange attractors // Nonlinear Dynamics. 2017. Vol. 89, No. 4. P. 2629–2639. https://doi.org/10.1007/s11071-017-3612-0

Li C., Sprott J.C., Kapitaniak T., Lu T. Infinite lattice of hyperchaotic strange attractors // Chaos, Solitons and Fractals. 2018. Vol. 109. P. 76–82. https://doi.org/10.1016/j.chaos.2018.02.022

Li C., Thio W.J., Sprott J.C., Iu H.H.C., Xu Y. Constructing Infinitely Many Attractors in a Programmable Chaotic Circuit // IEEE. 2018. Access 6: 29003. https://doi.org/10.1109/ACCESS.2018.2824984

Леонов Г.А. Теория управления. СПб.: Изд-во С.-Петерб. ун-та, 2006.


References

Guan Z.H., Huang F., Guan W., “Chaos-based image encryption algorithm”, Phys. Lett. A 346(1–3), 153–157 (2005). https://doi.org/10.1016/j.physleta.2005.08.006

Gao T., Chen Z., “A new image encryption algorithm based on hyper-chaos”, Phys. Lett. A 372(4), 394–400 (2008). https://doi.org/10.1016/j.physleta.2007.07.040

Xie E.Y., Li C., Yu S., Lu J., “On the cryptanalysis of Fridrich’s chaotic image encryption scheme”, Signal processing 132, 150–154 (2017). https://doi.org/10.1016/j.sigpro.2016.10.002

Wang S., Kuang J., Li J., Luo Y., Lu H., Hu G., “Chaos-based secure communications in a large community”, Phys. Rev. E 66, 065202R (2012). https://doi.org/10.1103/PhysRevE.66.065202

Wang G., He S., “A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators”, IEEE Trans. on Circuits Syst.–I: Fund. Theor. Appl. 50(7), 945–953 (2003). https://doi.org/10.1109/TCSI.2003.812606

Liu Z., Zhu X.H., Hu W., Jiang F., “Principles of chaotic signal Radar”, Int. J. Bifurcation and Chaos 17(5), 1735 (2007). https://doi.org/10.1142/S0218127407018038

Leonov G.A., “Efficient Methods for the Search for Periodic Oscillations in Dynamical Systems”, Prikl. Mat. Mekh. 74(1), 37–49 (2010). (In Russian)

Bragin V.O., Vagaitsev V.I., Kuznetsov N.V., Leonov G.A., “Algorithms for Finding Hidden Oscillations in Nonlinear Systems: the Aizerman and Kalman Problems and Chua’s Circuits”, Izv. Ross. Akad. Nauk. Teor. Sist. Upr. 50(4), 3–36 (2011). (In Russian)

Leonov G.A., Kuznetsov N.V., Vagaitsev V.I., “Localization of hidden Chua’s attractors”, Physics Letters A 375, 2230–2233 (2011). https://doi.org/10.1016/j.physleta.2011.04.037

Dudkowski D., Jafari S., Kapitaniak T., Kuznetsov N.V., Leonov G.A., Prasad A., “Hidden attractors in dynamical systems”, Physics Reports 637, 1–50 (2016). https://doi.org/10.1016/j.physrep.2016.05.002

Burkin I.M., Nguen N.K., “Analytical-Numerical Methods of Finding Hidden Oscillations in Multidimensional Dynamical Systems”, Diff. Equations 50(13), 1695–1717 (2014). https://doi.org/10.1134/S0012266114130023

Burkin I.M., “Hidden attractors of some multistable systems with infinite number of equilibria”, Chebyshevskiy sbornik 18(4), 18–33 (2017). (In Russian)

Li C., Sprott J.C., Hu W., Xu Y., “Infinite multistability in a self-reproducing chaotic system”, Int. J. Bifurc. Chaos 27(10), 1750160. (2017). https://doi.org/10.1142/S0218127417501607

Li C., Sprott J.C., Mei Y., “An infinite 2-D lattice of strange attractors”, Nonlinear Dynamics 89(4), 2629–2639 (2017). https://doi.org/10.1007/s11071-017-3612-0

Li C., Sprott J.C, Kapitaniak T., Lu T., “Infinite lattice of hyperchaotic strange attractors”, Chaos, Solitons and Fractals 109, 76–82 (2018). https://doi.org/10.1016/j.chaos.2018.02.022

Li C., Thio W. J., Sprott J.C., Iu H.H.C., Xu Y., “Constructing Infinitely Many Attractors in a Programmable Chaotic Circuit”, IEEE Access 6: 29003 (2018). https://doi.org/10.1109/ACCESS.2018.2824984

Leonov G.A., Сontrol theory (St. Petersburg Univ. Press, St. Petersburg, 2006). (In Russian)

Published

2019-11-28

How to Cite

Burkin, I. M., & Kuznetsova, O. I. (2019). Generating extremely multistable systems based on Lurie form systems. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 6(4), 555–563. https://doi.org/10.21638/11701/spbu01.2019.403

Issue

Section

In memoriam of G. A. Leonov