Formulation of the fatigue fracture criterion of composite materials

Authors

  • Alexander R. Arutyunyan

DOI:

https://doi.org/10.21638/spbu01.2020.313

Abstract

According to numerous studies of different types of composite materials was found that the main processes of fatigue fracture in these materials are caused by the accumulation of damage. The measure of damage is determined by various degradation processes of the material: the fibers fracture, delamination, destruction of the matrix, the joint destruction of the matrix and fibers, separation on the interface, re-inclusion. The sequence of these damages can be various up to full fracture of a material. Unlike metals, for which the formation and development of cracks are the main mechanisms that determine the durability of the material, for composite materials, these mechanisms are determined by the kinetics of the development of the damaged state until the final fracture. The cumulative damage accumulation curve is an increasing function of the time (number of loading cycles) until the moment of macro-fracture. In the general formulation of the kinetic equation for the damage parameter was considered in the works of Howard and Bokshitsky. According to these works, the damage of the system, in accordance with the conception of statistical physics, proceeds at a rate that depends on some external factors (mechanical, physical, chemical, etc.), as well as the value of the accumulated damage. Since that the real materials have a random structure, therefore, the continuity or damage parameter is a statistical index. This index can defined using a kinetic equation, the right part of which is given in the form of a power dependence on the value of the effective stress. The given conception was used in the works of Kachanov-Rabotnov and on its basis, the criterion of brittle fracture under hightemperature creep was formulated. In this paper, the damage conception is used to describe the damage processes of composite materials and the formulation of the fatigue strength criterion. The relative changes of the elasticity modulus in the process of cyclic loadings is considered as a continuity (damage) parameter. The critical value of damages is accepted as a fracture condition and on this basis the criterion of fatigue strength is formulated. The coefficients of the criterion are concretized and damage accumulation curves and fatigue curves are plotted. A good agreement between the theoretical damage and fatigue curves with the results of the corresponding experiments on the fatigue of carbon fiber plastics is observed.

Downloads

Download data is not yet available.
 

References

Литература

1. Boller K.H. Fatigue Fundamentals for Composite Materials. In: Composite Materials: Testing and Design. West Conshohocken, PA: ASTM International, 1969. Vol. 460. P. 217–235. https://doi.org/10.1520/STP49819S

2. Salkind M. J. Fatigue of composites. In: Composite Materials: Testing and Design. West Conshohocken, PA: ASTM International, 1972. Vol. 497. P. 143–169. https://doi.org/10.1520/STP27745S

3. Dew-Hughes D., Way J. L. Fatigue of fiber-reinforced plastics: a review // Composites. 1973. Vol. 4. Iss. 4. P. 167–173. https://doi.org/10.1016/0010-4361(73)90108-0

4. Фудзии Т., Дзако М. Механика разрушения композиционных материалов: пер. с англ. М.: Мир, 1982.

5. Оуен М.Дж. Усталостное повреждение стеклопластиков. В кн.: Композиционные материалы. Т. 5. Разрушение и усталость / под ред. Л. Браутмана, Р. Крока, пер. с англ. М.: Мир, 1978. С. 333–362.

6. Оуен М.Дж. Усталость углепластиков. В кн.: Композиционные материалы. Т. 5. Разрушение и усталость / под ред. Л. Браутмана, Р. Крока, пер. с англ. М.: Мир, 1978. С. 363–393.

7. Philippidis T. P., Vassilopoulos A. P. Fatigue design allowables for GRP laminates based on stiffness degradation measurements // Composites Science and Technology. 2000. Vol. 60. P. 2819–2828. https://doi.org/10.1016/S0266-3538(00)00150-0

8. Haward R.N. The extension and rupture of cellulose acetate and celluloid // Trans. Farad. Soc. 1942. Vol. 38. P. 394–400.

9. Бокшицкий М.Н. Длительная прочность полимеров. М.: Химия, 1978.

10. Качанов Л.М. О времени разрушения в условиях ползучести // Изв. АН СССР. ОТН. 1958. №8. С. 26–31.

11. Работнов Ю.Н. Ползучесть элементов конструкций М.: Наука, 1966.

12. Арутюнян Р.А. Накопление повреждений и разрушение высокоэластичного тонкого слоя при циклическом обжатии // Вестник С.-Петерб. ун-та. Сер. 1. Математика. Механика. Астрономия. 2012. Вып. 4. С. 53–61.

13. Arutyunyan R.A. High-temperature embrittlement and long-term strength of metallic materials // Mechanics of Solids. 2015. Vol. 50. Iss. 2. P. 191–197. https://doi.org/10.3103/S0025654415020089

14. Арутюнян Р.А. Проблема деформационного старения и длительного разрушения в механике материалов. СПб.: Изд-во С.-Петерб. ун-та, 2004.

15. Lemaitre J., Desmorat R. Engineering Damage Mechanics. Berlin; Heidelberg: Springer-Verlag, 2005.

16. Lemaitre J., Dufailly J. Damage measurements // Engineering Fracture Mechanics. 1987. Vol. 28. Iss. 5–6. P. 643–661. https://doi.org/10.1016/0013-7944(87)90059-2

17. Kim S., Kim W. A progressive damage modeling based on the continuum damage mechanics and its finite element analysis // J. Appl. Mech. 1994. Vol. 61, no. 1. P. 45–53. https://doi.org/10.1115/1.2901419

18. Lemaitre J., Leckie F., Sherman D. Crazing of laminates // European Journal of Mechanics - A/Solids. 1992. Vol. 11, no. 3. P. 289–304.

19. Tang C., Plumtree A. Damage mechanics applied to polymers // Engineering Fracture Mechanics. 1994. Vol. 49, iss. 4. P. 499–508. https://doi.org/10.1016/0013-7944(94)90044-2

20. Dharan C. Fatigue Failure Mechanisms in a Unidirectionally Reinforced Composite Material. In: Fatigue of Composite Materials. West Conshohocken, PA: ASTM International, 1975. P. 171–188. https://doi.org/10.1520/STP33172S

References

1. Boller K.H., “Fatigue Fundamentals for Composite Materials”, in: Composite Materials: Testing and Design 460, 217–235 (ASTM International, West Conshohocken, PA, 1969). https://doi.org/10.1520/STP49819S

2. SalkindM. J., “Fatigue of composites”, in: Composite Materials: Testing and Design 497, 143–169 (ASTM International, West Conshohocken, PA, 1972). https://doi.org/10.1520/STP27745S

3. Dew-Hughes D., Way J. L., “Fatigue of fiber-reinforced plastics: a review”, Composites 4, iss. 4, 167–173 (1973). https://doi.org/10.1016/0010-4361(73)90108-0

4. Fujii T., Zako M., Fracture and Mechanics of Composite Materials (Jikkyo Shuppan, Tokyo, 1978).

5. Owen M. J., “Fatigue damage in glass-fiber-reinforced plastics”, in: Composite materials. Vol. 5: Fracture and Fatigue, 314–340 (L. Brautman, R. Crock (eds.), Academic Press, New York, 1974).

6. Owen M. J., “Fatigue of carbon-fiber-reinforced plastics”, in: Composite materials. Vol. 5: Fracture and Fatigue, 342–369 (L. Brautman, R. Crock (eds.), Academic Press, New York, 1974).

7. Philippidis T. P., Vassilopoulos A.P., “Fatigue design allowables for GRP laminates based on stiffness degradation measurements”, Composites Science and Technology 60, 2819–2828 (2000). https://doi.org/10.1016/S0266-3538(00)00150-0

8. Haward R.N., “The extension and rupture of cellulose acetate and celluloid”, Trans. Farad. Soc. 38, 394–400 (1942).

9. Bokshitsky M.N., Long-term strength of polymers (Chemistry Publ.,Moscow, 1978). (In Russian)

10. Kachanov L.M., “On the time of fracture under creep conditions”, Izvestija AN SSSR. OTN (8), 26–31 (1958). (In Russian)

11. Rabotnov Yu.N., The creep of structural elements (Nauka Publ., Moscow, 1966). (In Russian)

12. Arutyunyan R.A., “Damage accumulation and fracture of highly elastic thin layer under cyclic compression”, Vestnik of Saint Petersburg University. Ser. 1. Mathematics. Mechanics. Astronomy, iss. 4, 53–61 (2012). (In Russian)

13. Arutyunyan R.A., “High-temperature embrittlement and long-term strength of metallic materials”, Mechanics of Solids 50(2), 191–197 (2015). https://doi.org/10.3103/S0025654415020089

14. Arutyunyan R.A., The problem of deformation aging and long-term fracture in the mechanics of materials (St. Petersburg University Press, St. Petersburg, 2004). (In Russian)

15. Lemaitre J., Desmorat R., Engineering Damage Mechanics (Springer-Verlag, Berlin, Heidelberg, 2005).

16. Lemaitre J., Dufailly J., “Damage measurements”, Engineering Fracture Mechanics 28, iss. 5–6, 643–661 (1987). https://doi.org/10.1016/0013-7944(87)90059-2

17. Kim S., Kim W., “A progressive damage modeling based on the continuum damage mechanics and its finite element analysis”, J. Appl. Mech. 61(1), 45–53 (1994). https://doi.org/10.1115/1.2901419

18. Lemaitre J., Leckie F., Sherman D., “Crazing of laminates”, European Journal of Mechanics - A/Solids 11(3), 289–304 (1992).

19. Tang C., Plumtree A., “Damage mechanics applied to polymers”, Engineering Fracture Mechanics 49, iss. 4, 499–508 (1994). https://doi.org/10.1016/0013-7944(94)90044-2

20. Dharan C., “Fatigue Failure Mechanisms in a Unidirectionally Reinforced Composite Material”, in: Fatigue of Composite Materials, 171–188 (ASTM International, West Conshohocken, PA, 1975). https://doi.org/10.1520/STP33172S

Published

2020-09-04

How to Cite

Arutyunyan, A. R. (2020). Formulation of the fatigue fracture criterion of composite materials. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(3), 511–517. https://doi.org/10.21638/spbu01.2020.313

Issue

Section

Mechanics