Influence of unit cell parameters of tetrachiral mechanical metamaterial on its effective properties
DOI:
https://doi.org/10.21638/spbu01.2021.113Abstract
In the paper, we study the mechanical behavior of a three-dimensional chiral mechanical metamaterial using numerical modeling. A feature of chiral structures is that during their uniaxial loading a twisting is observed along the loading axis. A rod of the mechanical metamaterial composed of 3 × 3 × 9 unit cells along the corresponding three orthogonal axes. The relative strain of uniaxial compression of the sample in the simulation did not exceed 3.3%. The simulation was performed by the finite element method in a threedimensional case. Original results on the dependencies of the rotation angle and the reaction of the rigidly fixed support of the metamaterial sample on the parameters characterizing the structure of the unit cell of the metamaterial are presented in this context. All the dependencies, except one, are nonlinear with portions of large and small changes.Keywords:
numerical modeling, finite-element method, metamaterial, structure-property relation, chiral structure, uniaxial deformation, rotation
Downloads
References
Литература
References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.