Численное моделирование деформационного поведения полимерных решетчатых структур с градиентом пористости, изготовленных на основе аддитивных технологий

Авторы

  • Наталия Витальевна Еленская Пермский национальный исследовательский политехнический университет, Российская Федерация, 614990, Пермь, Комсомольский пр., 29
  • Михаил Анатольевич Ташкинов Пермский национальный исследовательский политехнический университет, Российская Федерация, 614990, Пермь, Комсомольский пр., 29
  • Вадим Владимирович Зильбершмидт Университет Лафборо, Великобритания, LE11 3TU, Лафборо, Эпинал Уэй

DOI:

https://doi.org/10.21638/spbu01.2022.410

Аннотация

Исследуются вопросы механического поведения градиентных решетчатых структур, геометрия которых создана на основе аналитического определения трехмерных трижды периодических минимальных поверхностей (ТПМП). Рассмотрены несколько однородных и градиентных решетчатых моделей с различными типами геометрии представительного объема и параметрами градиента. Проведена валидация численных моделей с помощью данных, полученных экспериментально с использованием видеосистемы Vic-3D Micro-DIC. Представлены результаты численного моделирования деформационного поведения градиентных структур с геометрией на основе ТПМП Шоена G (гироид) при одноосном сжатии. Изучено влияние параметров структуры и свойств градиента на механическое поведение.

Ключевые слова:

трижды периодические минимальные поверхности, двухфазные структуры, метод конечных элементов, функциональный градиент, микроструктура

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Литература

1. Afshar M., Anaraki A.P., Montazerian H., Kadkhodapour J. Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures J. Mech. Behav. Biomed. Mater. 62, 481-494 (2016). https://doi.org/10.1016/j.jmbbm.2016.05.027

2. Bracaglia L.G., Smith B., Watson E., Arumugasaamy N., Mikos A.G., Fisher J. 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater. 56, 3-13 (2017). https://doi.org/10.1016/j.actbio.2017.03.030

3. Pagani S., Liverani E., Giavaresi G., De Luca A., Belvedere C., Fortunato A., Leardini А., Fini М., Tomesani L., Caravaggi P. Mechanical and in vitro biological properties of uniform and graded Cobalt-chrome lattice structures in orthopedic implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 109 (12), 2091-2103 (2021). https://doi.org/10.1002/jbm.b.34857

4. Wang Y., M¨uller W.D., Rumjahn A., Schmidt F., Schwitalla A.D. Mechanical properties of fused filament fabricated PEEK for biomedical applications depending on additive manufacturing parameters. J. Mech. Behav. Biomed. Mater. 115, 104250 (2021). https://doi.org/10.1016/j.jmbbm.2020.104250

5. Li X., Xiong Y.Z., Zhang H., Gao R.N. Development of functionally graded porous titanium/silk fibroin composite scaffold for bone repair. Mater. Lett. 282, 128670 (2021). https://doi.org/10.1016/j.matlet.2020.128670

6. Zhao M., Liu F., Fu G., Zhang D.Z., Zhang T., Zhou H. Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM. Materials. 11 (12), 2411 (2018). https://doi.org/10.3390/ma11122411

7. Liu F., Mao Z., Zhang P., Zhang D.Z., Jiang J., Ma Z. Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties. Mater. Des. 160, 849-860 (2018). https://doi.org/10.1016/j.matdes.2018.09.053

8. Shi X., Liao W., Liu T., Zhang C., Li D., Jiang W., Wang C., Ren F. Design optimization of multimorphology surface-based lattice structures with density gradients. Int. J. Adv. Manuf. Technol. 117, 2013-2028 (2021). https://doi.org/10.1007/s00170-021-07175-3

9. Bargmann S., Klusemann B., Markmann J., Schnabel J.E., Schneider K., Soyarslan C., Wilmers J. Generation of 3D representative volume elements for heterogeneous materials: A review. Prog. Mater. Sci. 96, 322-384 (2018). https://doi.org/10.1016/j.pmatsci.2018.02.003

10. Han C., Li Y., Wang Q., Wen S., Wei Q., Yan C., Hao L., Liu J., Shi Y. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. J. Mech. Behav. Biomed. Mater. 80, 119-127 (2018). https://doi.org/10.1016/j.jmbbm.2018.01.013

11. Ng J.L., Collins C.E., Knothe Tate M.L. Engineering mechanical gradients in next generation biomaterials - Lessons learned from medical textile design. Acta Biomater. 56, 14-24 (2017). https://doi.org/10.1016/j.actbio.2017.03.004

12. Zhang X.Y., Fang G., Leeflang S., Zadpoor A.A., Zhou J. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomater. 84, 437-452 (2019). https://doi.org/10.1016/j.actbio.2018.12.013

13. Moetazedian A., Gleadall A., Han X., Silberschmidt V.V. Effect of environment on mechanical properties of 3D printed polylactide for biomedical applications. J. Mech. Behav. Biomed. Mater. 102, 103510 (2020). https://doi.org/10.1016/j.jmbbm.2019.103510

14. Ruiz-Cantu L., Gleadall A., Faris C., Segal J., Shakesheff K., Yang J. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Mater. Sci. Eng. C, Mater. Bio. Appl. 109, 110578 (2020). https://doi.org/10.1016/j.msec.2019.110578

15. Wang X., Xu S., Zhou S., Xu W., Leary M., Choong P., Qian M., Brandt M., Xie Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83, 127-141 (2016). https://doi.org/10.1016/j.biomaterials.2016.01.012

16. Wang Z., Wang Y., Yan J., Zhang K., Lin F., Xiang L., Deng L., Guan Z., Cui W., Zhang H. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv. Drug Deliv. Rev. 174, 504-534 (2021). https://doi.org/10.1016/j.addr.2021.05.007

17. Shah R., Gashi B., Hoque S., Marian M., Rosenkranz A. Enhancing mechanical and biomedical properties of protheses - Surface and material design. Surfaces and Interfaces 27, 101498 (2021). https://doi.org/10.1016/j.surfin.2021.101498

18. Entezari A., Zhang Z., Sue A., Sun G., Huo X., Chang C. C., Zhou S., Swain M.V., Li Q. Nondestructive characterization of bone tissue scaffolds for clinical scenarios. J. Mech. Behav. Biomed. Mater. 89, 150-161 (2019). https://doi.org/10.1016/j.jmbbm.2018.08.034

19. Razi H., Checa S., Schaser K.D., Duda G.N. Shaping scaffold structures in rapid manufacturing implants: A modeling approach toward mechano-biologically optimized configurations for large bone defect. J. Biomed. Mater. Res. Part B Appl. Biomater. 100 В, 1736-1745 (2012). https://doi.org/10.1002/jbm.b.32740

20. Zhang L., Song B., Yang L., Shi Y. Tailored mechanical response and mass transport characteristic of selective laser melted porous metallic biomaterials for bone scaffolds. Acta Biomater. 112, 298-315 (2020). https://doi.org/10.1016/j.actbio.2020.05.038

21. Tashkinov M.A. Multipoint stochastic approach to localization of microscale elastic behavior of random heterogeneous media. Comput. Struct. 249, 106474 (2021). https://doi.org/10.1016/j.compstruc.2020.106474

References

1. Afshar M., Anaraki A.P., Montazerian H., Kadkhodapour J. Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures J. Mech. Behav. Biomed. Mater. 62, 481-494 (2016). https://doi.org/10.1016/j.jmbbm.2016.05.027

2. Bracaglia L.G., Smith B., Watson E., Arumugasaamy N., Mikos A.G., Fisher J. 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater. 56, 3-13 (2017). https://doi.org/10.1016/j.actbio.2017.03.030

3. Pagani S., Liverani E., Giavaresi G., De Luca A., Belvedere C., Fortunato A., Leardini А., Fini М., Tomesani L., Caravaggi P. Mechanical and in vitro biological properties of uniform and graded Cobalt-chrome lattice structures in orthopedic implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 109 (12), 2091-2103 (2021). https://doi.org/10.1002/jbm.b.34857

4. Wang Y., M¨uller W.D., Rumjahn A., Schmidt F., Schwitalla A.D. Mechanical properties of fused filament fabricated PEEK for biomedical applications depending on additive manufacturing parameters. J. Mech. Behav. Biomed. Mater. 115, 104250 (2021). https://doi.org/10.1016/j.jmbbm.2020.104250

5. Li X., Xiong Y.Z., Zhang H., Gao R.N. Development of functionally graded porous titanium/silk fibroin composite scaffold for bone repair. Mater. Lett. 282, 128670 (2021). https://doi.org/10.1016/j.matlet.2020.128670

6. Zhao M., Liu F., Fu G., Zhang D.Z., Zhang T., Zhou H. Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM. Materials. 11 (12), 2411 (2018). https://doi.org/10.3390/ma11122411

7. Liu F., Mao Z., Zhang P., Zhang D.Z., Jiang J., Ma Z. Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties. Mater. Des. 160, 849-860 (2018). https://doi.org/10.1016/j.matdes.2018.09.053

8. Shi X., Liao W., Liu T., Zhang C., Li D., Jiang W., Wang C., Ren F. Design optimization of multimorphology surface-based lattice structures with density gradients. Int. J. Adv. Manuf. Technol. 117, 2013-2028 (2021). https://doi.org/10.1007/s00170-021-07175-3

9. Bargmann S., Klusemann B., Markmann J., Schnabel J.E., Schneider K., Soyarslan C., Wilmers J. Generation of 3D representative volume elements for heterogeneous materials: A review. Prog. Mater. Sci. 96, 322-384 (2018). https://doi.org/10.1016/j.pmatsci.2018.02.003

10. Han C., Li Y., Wang Q., Wen S., Wei Q., Yan C., Hao L., Liu J., Shi Y. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. J. Mech. Behav. Biomed. Mater. 80, 119-127 (2018). https://doi.org/10.1016/j.jmbbm.2018.01.013

11. Ng J.L., Collins C.E., Knothe Tate M.L. Engineering mechanical gradients in next generation biomaterials - Lessons learned from medical textile design. Acta Biomater. 56, 14-24 (2017). https://doi.org/10.1016/j.actbio.2017.03.004

12. Zhang X.Y., Fang G., Leeflang S., Zadpoor A.A., Zhou J. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomater. 84, 437-452 (2019). https://doi.org/10.1016/j.actbio.2018.12.013

13. Moetazedian A., Gleadall A., Han X., Silberschmidt V.V. Effect of environment on mechanical properties of 3D printed polylactide for biomedical applications. J. Mech. Behav. Biomed. Mater. 102, 103510 (2020). https://doi.org/10.1016/j.jmbbm.2019.103510

14. Ruiz-Cantu L., Gleadall A., Faris C., Segal J., Shakesheff K., Yang J. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Mater. Sci. Eng. C, Mater. Bio. Appl. 109, 110578 (2020). https://doi.org/10.1016/j.msec.2019.110578

15. Wang X., Xu S., Zhou S., Xu W., Leary M., Choong P., Qian M., Brandt M., Xie Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83, 127-141 (2016). https://doi.org/10.1016/j.biomaterials.2016.01.012

16. Wang Z., Wang Y., Yan J., Zhang K., Lin F., Xiang L., Deng L., Guan Z., Cui W., Zhang H. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv. Drug Deliv. Rev. 174, 504-534 (2021). https://doi.org/10.1016/j.addr.2021.05.007

17. Shah R., Gashi B., Hoque S., Marian M., Rosenkranz A. Enhancing mechanical and biomedical properties of protheses - Surface and material design. Surfaces and Interfaces 27, 101498 (2021). https://doi.org/10.1016/j.surfin.2021.101498

18. Entezari A., Zhang Z., Sue A., Sun G., Huo X., Chang C. C., Zhou S., Swain M.V., Li Q. Nondestructive characterization of bone tissue scaffolds for clinical scenarios. J. Mech. Behav. Biomed. Mater. 89, 150-161 (2019). https://doi.org/10.1016/j.jmbbm.2018.08.034

19. Razi H., Checa S., Schaser K.D., Duda G.N. Shaping scaffold structures in rapid manufacturing implants: A modeling approach toward mechano-biologically optimized configurations for large bone defect. J. Biomed. Mater. Res. Part B Appl. Biomater. 100 В, 1736-1745 (2012). https://doi.org/10.1002/jbm.b.32740

20. Zhang L., Song B., Yang L., Shi Y. Tailored mechanical response and mass transport characteristic of selective laser melted porous metallic biomaterials for bone scaffolds. Acta Biomater. 112, 298-315 (2020). https://doi.org/10.1016/j.actbio.2020.05.038

21. Tashkinov M.A. Multipoint stochastic approach to localization of microscale elastic behavior of random heterogeneous media. Comput. Struct. 249, 106474 (2021). https://doi.org/10.1016/j.compstruc.2020.106474

Загрузки

Опубликован

26.12.2022

Как цитировать

Еленская, Н. В., Ташкинов, М. А., & Зильбершмидт, В. В. (2022). Численное моделирование деформационного поведения полимерных решетчатых структур с градиентом пористости, изготовленных на основе аддитивных технологий. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 9(4), 679–692. https://doi.org/10.21638/spbu01.2022.410

Выпуск

Раздел

Механика