Неравенства для производных рациональных функций с заданными полюсами и ограниченными нулями
DOI:
https://doi.org/10.21638/spbu01.2023.309Аннотация
В статье получены неравенства для производных рациональных функций с заданными полюсами и ограниченными нулями, уточняющие и обобщающие известные классические результаты. Вместо предположения о том, что рациональная функция r(z) с заданными полюсами имеет в начале координат нуль порядка s, предполагается, что функция имеет нуль кратности s в любой точке внутри единичной окружности, тогда как остальные нули находятся внутри или вне круга радиуса k. Помимо обобщения некоторых неравенств для рациональных функций в статье как частные случаи уточняются полиномиальные неравенстваКлючевые слова:
неравенства, многочлены, рациональные функции, полюса, нули
Скачивания
Библиографические ссылки
Литература
References
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.