Обратная задача для неоднородного интегродифференциального уравнения гиперболического типа
DOI:
https://doi.org/10.21638/spbu01.2024.109Аннотация
Рассматривается обратная задача нахождения решения и одномерного ядра интегрального члена неоднородного интегродифференциального уравнения гиперболического типа из условий, составляющих прямую задачу, и некоторого дополнительного условия. Сначала исследуется прямая задача, при этом ядро интегрального члена предполагается известным. Далее, используя дополнительную информацию о решении прямой задачи, получаем интегральное уравнение относительно ядра интеграла h(t), интегрального члена. Таким образом, задача сводится к решению системы интегральных уравнений вольтерровского типа второго рода. Полученная система записывается в виде операторного уравнения. Для доказательства глобальной однозначной разрешимости этой задачи применяется методс жатых отображений в пространстве непрерывных функций с весовыми нормами. Доказана теорема условной устойчивости решения обратной задачи, при этом используется метод оценок интегралов и неравенство Гроноулла.Ключевые слова:
уравнение гиперболического типа, интегродифференциальное уравнение, ядро, обратная задача, метод сжатых отображений
Скачивания
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.