Стабилизация линейных систем управления. Проблема назначения полюсов. Обзор

Авторы

  • Магомет Мишаустович Шумафов Адыгейский государственный университет, Российская Федерация, 38500, Майкоп, Первомайская, 208

DOI:

https://doi.org/10.21638/11701/spbu01.2019.404

Аннотация

В статье дан обзор по проблеме стабилизации стационарных линейных систем управления и проблеме назначения полюсов или размещения собственных чисел. Приведены основные результаты работ по данной тематике. Рассматриваются стационарная и нестационарная стабилизации обратной связью. Приведены алгоритмы (низкочастотной и высокочастотной стабилизаций) решения проблемы Брокетта о стабилизации линейных систем нестационарной обратной связью. Даны эффективные необходимые и достаточные условия стабилизируемости двумерных и трехмерных управляемых линейных систем. Рассматривается проблема о назначении полюсов и смежные с ней вопросы.

Ключевые слова:

линейная система управления, обратная связь, неустойчивая система, стабилизация, асимптотическая устойчивость, назначение полюсов

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Литература

Bernstein D.S. Some Open Problems in Matrix Theory Arising in Linear Systems and Control // Linear Algebra and its Applications. 1992. Vol. 162–164. P. 409–432. https://doi.org/10.1016/0024-3795(92)90388-Q

Blondel V., Gevers M., Lindquist A. Survey on the state of the systems and control // European J. Contol. 1995. Vol. 1. P. 5–23. https://doi.org/10.1016/S0947-3580(95)70004-8

Syrmos V.L., Abdаllah C.T., Dorato P., Grigoriadis K. Static Output Feedback. A Survey // Automatica. 1997. Vol. 33, No. 2. P. 125–137. https://doi.org/10.1016/S0005-1098(96)00141-0

Open Problems in Mathematical Systems and Control Theory / ed. by V.D. Blondel, E.D. Sontag, M. Vidyasagar, J.C. Willems. London: Springer, 1999.

Поляк Б.Т., Щербаков П.С. Трудные задачи линейной теории управления. Некоторые подходы к решению // Автоматика и телемеханика. 2005. №5. С. 7–46.

Brockett R. A stabilization problem. In book: Open Problems in Mathematical Systems and Control Theory. London: Springer, 1999. https://doi.org/10.1007/978-1-4471-0807-8_16

Леонов Г.А. Проблема Брокетта в теории устойчивости линейных дифференциальных уравнений // Алгебра и анализ. 2001. Т. 13, №4. С. 134–155.

Леонов Г.А. Стабилизационная проблема Брокетта // Автоматика и телемеханика. 2001. №5. С. 190–193.

Leonov G.A. The Brockett Problem in the Theory of Nonstationary Stabilization of Linear Differential Equations // Amer. Math. Soc. Transl. 2002. Vol. 205, No. 2. P. 163–173. https://doi.org/10.1090/trans2/205/08

Леонов Г.А. Проблема Брокетта для линейных дискретных систем управления // Автоматика и телемеханика. 2002. №5. С. 92–96.

Леонов Г.А., Шумафов М.М. Проблемы стабилизации линейных управляемых систем. СПб.: Изд-во С.-Петерб. ун-та, 2002.

Moreau L., Aeyels D. Stabilization by means of periodic output feedback // Proc. of Сonference of Decision and Control (CDC). Phoenix, 1999. P. 108–109.

Moreau L., Aeyels D. A note on stabilization by periodic output feedback for third-order systems // Proc. of the 14th International Symposium of Mathematical Theory of Networks and Systems (MTNS). Perpignan, 2000. 19–23 June. 2 pp.

Moreau L., Aeyels D. Periodic output feedback stabilization of single-input single-output continuous-time systems with odd relative degree // Systems & Control Letters. 2004. Vol. 51, No. 5. P. 395–406. https://doi.org/10.1016/j.sysconle.2003.10.001

Бойков И.В. К стабилизационной проблеме Брокетта // Автоматика и телемеханика. 2005. №5. С. 76–82.

Бойков И.В. Проблема Брокетта для систем нелинейных дифференциальных уравнений с запаздыванием // Известия вузов. Поволжский регион. Физико-математические науки. 2011. №4(20). С. 3–13.

Insperger T., Stepan G. Brockett problem for systems with feedback delay // Proc. of the 17th World Congress of the Intern. Fed. of Aut. Contr. (IFAC). Seoul, 2008. July 6–11. P. 11491–11496. https://doi.org/10.3182/20080706-5-KR-1001.01947

Зубов В.И. Теория оптимального управления. Л.: Судостроение, 1966.

Wonham W.M. On Pole Assignment in Multi-Input Controllable Linear Systems // IEEE Trans. Aut. Contr. 1967. Vol.AC-12, No. 6. P. 660–665. https://doi.org/10.1109/TAC.1967.1098739

Hautus M.L.J. Controllability and observability conditions of linear autonomous systems // Nedert. Acad. Wetensch. Proc. Ser. A. 1969. Vol. 72. P. 443–448. https://doi.org/10.1016/S1385-7258(70)80049-X

Kailath T. Linear Systems // In: Prentice-Hall Information and System Sciences Series. Englewood Cliffs, N. J.: Prentice-Hall, 1980.

Kalman R.E. Contribution to the theory of optimal theory // Bol. Soc. Mat. Mexicana. 1960. Vol. 5. P. 102–119.

Квакернаак Х., Сиван Р. Линейные оптимальные системы управления. М.: Мир, 1977.

Кузьмин П.А. Малые колебания и устойчивость движения. М.: Наука, 1973.

Helmke U., Anderson B. Hermitian pencils and output feedback stabilization of scalar systems // Int. J. Control. 1992. Vol. 56. P. 857–876. https://doi.org/10.1080/00207179208934347

Perez F., Abdallah C., Dorato P., Docambo D. Algebraic testsfor output stabilizability // Proc. 32nd IEEE Conf. on Decision and Control., San Antonio, TX. 1993. P. 2385–2386.

Kucera V., Souza C. A necessary and sufficient condition for output feedback stabilizability // Automatica. 1995. Vol. 31. P. 1357–1359. https://doi.org/10.1016/0005-1098(95)00048-2

Гелиг А.Х., Леонов Г.А., Якубович В.А. Устойчивость нелинейных систем с неединственным состоянием равновесия. М.: Наука, 1978.

Trofino-Neto A., Kucera V. Stabilization via static output feedback // IEEE Trans. Aut. Control. 1993. Vol.AC-38. P. 764–765. https://doi.org/10.1109/9.277243

Cao Y.Y., Sun Y.X., Mao W.J. A new necessary and sufficient condition for static output feedback stabilizability and comments on “Stabilization via static Output feedback” // IEEE Trans. Aut. Control. 1998. Vol.AC-43 (8). P. 1110–1112. https://doi.org/10.1109/9.704983

Iwasaki T., Skelton R. Parametrization of all stabilizing controllers via quadratic Lyapunov functions // J. Optim. Theory Applic. 1995. Vol. 77. P. 291–307. https://doi.org/10.1007/BF02192228

El-Chaoui L., Gahinet P. Rank minimization under LMI constraints: a framework for output feedback problems // Proc. Eur. Control Conf. Groningen, 1993. P. 1176–1179.

Davison E. An automatic way of finding optional control systems for large multi-variable plants // Proc. IFAC Tokyo Symp. Control. 1965. P. 357–373.

Anderson B., Bose N., Jury E. Output feedback stabilization and related problems — solution via decision methods // IEEE Trans. Aut. Control. 1975. Vol.AC-20. P. 53–65. https://doi.org/10.1109/TAC.1975.1100846

Anderson B.D.O., Clements J.C. Algebraic characterization of fixed modes in decentralized control // Automatica. 1981. Vol. 17. P. 703–712. https://doi.org/10.1016/0005-1098(81)90017-0

Byrnes C.I., Anderson B.D.O. Output feedback and generic stabilizability // SIAM J. Contr. Optim. 1984. No. 11. P. 362–380. https://doi.org/10.1137/0322024

Anderson B.D.O., Scott R.W. Output feedback stabilization — solution by algebraic geometry methods // Proc. IEEE. 1977. Vol. 65. P. 849–861. https://doi.org/10.1109/PROC.1977.10581

Wu J.W., Lian K.Y., Lancaster P. A stabilization criterion for matrices // Linear Algebra and its Applications. 2007. Vol. 422. P. 22–28. https://doi.org/10.1016/j.laa.2006.09.002

Crauel H., Damm T., Ilchmann A. Stabilization of linear systems by rotation // J. Diff. Equations. 2007. Vol. 234. P. 412–438. https://doi.org/10.1016/j.jde.2006.12.005

Меерков С.М. Вибрационное регулирование // Автоматика и телемеханика. 1973. №2. С. 34–43.

Meerkov S.M. Vibrational control theory // J. Franklin Inst. 1977. Vol. 3, No. 2. P. 117–128. https://doi.org/10.1016/0016-0032(77)90040-0

Tamaseviciute E., Tamasevicius A. Stabilizing uncertain steady states of some dynamical systems by means of proportional feedback // Nonlinear Analysis: Modeling and Control. 2013. Vol. 18, No. 1. P. 86–98. https://doi.org/10.15388/NA.18.1.14034

Blondel V. Simultaneous Stabilization of Linear Systems. London, Berlin, Heidelberg: Springer-Verlag, 1994.

Nett C., Bernstein D., Haddad W. Minimal complexity control law synthesis. Pt. 1: Problem formulation and reduction to optimal static output feedback // Proc. American Contr. Conf. Pittsburg, 1989. P. 2056–2064. https://doi.org/10.23919/ACC.1989.4790528

Martensson B. The order of any stabilizing regulator is sufficient a priori information for adaptive stabilization // Syst. Control Lett. 1985. Vol. 6. P. 87–91. https://doi.org/10.1016/0167-6911(85)90002-7

Арнольд В.И. Обыкновенные дифференциальные уравнения М.: Наука, 1971.

Stephenson A. A new type of dynamical stability // Mem. Proc. Manchr. Cit. Phil. Soc. 1908. Vol. 52. P. 1907–1908.

Капица П.Л. Динамическая устойчивость маятника при колеблющейся точке подвеса // Журн. экспер. и теор. 1951. Т. 21, №5. С. 588–598.

Леонов Г.А., Шумафов М.М. Методы стабилизации линейных управляемых систем. СПб.: Изд-во С.-Петерб. ун-та, 2005.

Калман Р., Фалб П., Арбиб М. Очерки по математической теории систем. М.: Мир, 1971.

Rissanen J. Control system synthesis by analogue computer based on the “generalized linear feedback control” concept // Proc. Symp. Analog. Computation Applied to the Study Chemical Processes. Intern. seminar. Brussels, 1960. P. 1–13.

Rosenbrock H.H. Distinctive processes in process control // Chem. End. Prog. 1962. Vol. 58. P. 43–50.

Kalman R.E. Ljapunov Functions for the problem of Lur’e in Automatic Control // Proc. of the Nat. Acad. Sci. of USA. 1963. Vol. 49, No. 2. P. 201–205. https://doi.org/10.1073/pnas.49.2.201

Popov V.M. Hyperstability and optimality of automatic systems with several control functions // Rev. Roum. Sci. Tech. Ser. Electrotech. Energ. 1964. No. 9. P. 629–690.

Langenhop C.E. On the stabilization of linear systems // Proc. Amer. Math. Soc. 1964. Vol. 15, No. 5. P. 735–742. https://doi.org/10.1090/S0002-9939-1964-0168408-8

Simon J.D., Mitter S.K. A theory of modal control // Inform. Contr. 1968. Vol. 13. P. 316–353. https://doi.org/10.1016/S0019-9958(68)90834-6

Brunovsky P. A classification of linear controllable systems // Kybernetika. 1970. Vol. 6, No. 3. P. 173–187.

Chen C.T. A note on pole assignment // IEEE Trans. Aut. Contr. 1968. Vol.AC-12. P. 597–598. https://doi.org/10.1109/TAC.1968.1099009

Davison E.J. On Pole Assignment in Multivariable Linear Systems // IEEE Trans. Aut. Contr. 1968. Vol.AC-13. P. 747–748. https://doi.org/10.1109/TAC.1968.1099056

Heymann M. Comments “On pole assignment in multi-input controllable linear systems” // IEEE Trans. Aut. Contr. 1968. Vol.AC-13. P. 748–749. https://doi.org/10.1109/TAC.1968.1099017

Андреев Ю.Н. Управление конечномерными линейными объектами. М.: Наука, 1976.

Wonham W.M. Linear Multivariable Control: a Geometric Approach. New York, Heidelberg, Berlin: Springer-Verlag, 1979. https://doi.org/10.1007/978-1-4684-0068-7

Смирнов Е.Я. Стабилизация программных движений. СПб.: Изд-во СПбГУ, 1997.

Аксенов Г.С. К задаче стабилизации линейного объекта управления // Вестник Ленинградского гос. ун-та. 1977. №7. С. 5–8.

Леонов Г.А., Шумафов М.М. Элементарное доказательство теоремы о стабилизируемости линейных управляемых систем // Вестник С.-Петерб. ун-та. Сер. 1. Математика. Механика. Астрономия. 2003. Вып. 3 (№17). С. 56–68.

Леонов Г.А., Шумафов М.М. Алгоритм пошаговой стабилизации линейного объекта управления // Известия вузов. Сев.-Кавказ. регион. Естественные науки. 2005. №2. С. 14–19.

Kabamba R.T., Meerkov S.M., Roh E.K. Pole Placement Capabilities of Vibrational Control// IEEE Trans. Aut. Contr. 1998. Vol.AC-43, No. 9. P. 1256–1261. https://doi.org/10.1109/9.718610

Davison E.J. On Pole Assignment in Linear Systems with Incomplete State Feedback // IEEE Trans. Aut. Contr. 1970. Vol. AC-15. P. 348–351. https://doi.org/10.1109/TAC.1970.1099458

Davison E.J., Chatterjee R. A Note on Pole Assignment in Linear Systems with Incomplete State Feedback // IEEE Trans. Aut. Contr. 1971. Vol.AC-16. P. 98–99. https://doi.org/10.1109/TAC.1971.1099652

Davison E.J. An Algorithm for the Assignment of Closed-Loop Poles Using Output Feedback in Large Multivariable Systems // IEEE Trans. Aut. Contr. 1973. Vol.AC-18. P. 74–75. https://doi.org/10.1109/TAC.1973.1100212

Sridhar B., Lindorff D.P. Pole placement with constant gain output feedback // Int. J. Contr. 1973. Vol. 18. P. 993–1003. https://doi.org/10.1080/00207177308932575

Jameson A. Design of a single-input system for specified roots using output feedback // IEEE Trans. Aut. Contr. 1970. Vol.AC-15. P. 345–348. https://doi.org/10.1109/TAC.1970.1099454

Nandi A.K., Herzog J.H. Comments on Design of a Single-Input System for Specified Roots Using Output Feedback // IEEE Trans. Aut. Contr. 1971. Vol.AC-16. P. 384–385. https://doi.org/10.1109/TAC.1971.1099758

Davison E.J., Wang S.H. On Pole Assignment in Linear Multivariable Systems Using Output Feedback // IEEE Trans. Aut. Contr. 1975. Vol.AC-20. P. 516–518. https://doi.org/10.1109/TAC.1975.1101023

Kimura H. On pole assignment by output feedback // Int. J. Contol. 1978. Vol. 28. P. 11–22. https://doi.org/10.1080/00207177808922432

Brockett R., Byrnes C. Multivariable Nyquist criteria, root loci, and pole placement: a geometric viewpoint // IEEE Trans. Aut. Control. 1981. Vol.AC-26. P. 271–284. https://doi.org/10.1109/TAC.1981.1102571

Shumacher J. Compensator synthesis using (C, A, B)—pairs // IEEE Trans. Aut. Contr. 1980. Vol.AC-25. P. 1133–1138. https://doi.org/10.1109/TAC.1980.1102515

Wang X. Pole placement by static output feedback // Math. Systems, Estimations and Control. 1992. Vol. 2, No. 2. P. 205–218.

Leventides J., Karcanias N. Arbitrary pole placement via low order dynamic output feedback controllers: a solution in closed form / Technical ReportCEC/EL-NK/135. London: City University, 1995.

Rosental J., Schumacher J.M., Willems J.C. Generic eigenvalue assignment by memoryless real output feedback // Systems and Control Letters. 1995. Vol. 26. P. 253–260. https://doi.org/10.1016/0167-6911(95)00019-6

Willems J.C. Generic eigenvalue assignability by real memoryless output feedback made simple // Communications, Computation, Control and Signal Processing. N.Y.: Springer, 1997. P. 343–354. https://doi.org/10.1007/978-1-4615-6281-8_19

Leonov G.A., Shumafov M.M. Stabilization of Linear Systems. Cambridge: Cambridge Scientific Publishers, 2012.

Hermann R., Martin C. Applications of algebraic geometry to systems theory: Part 1 // IEEE Trans. Aut. Contr. 1977. Vol.AC–22. P. 19–25. https://doi.org/10.1109/TAC.1977.1101395

Willems J.C., Hesselink W.H. Generic properties of the pole placement problem // Proc. of the 7th IFAC Congress. 1978. P. 1725–1729. https://doi.org/10.1016/S1474-6670(17)66142-1

Andry A.N., Shapiro E.Y., Chung J.C. Eigenstructure Assignment for Linear Systems // IEEE Trans. Aerospace and Electronic Systems. 1983. Vol.Aes-19, No. 5. P. 711–728. https://doi.org/10.1109/TAES.1983.309373

Rosenbrock H.H. State Space and Multivariable Theory. New York: Wiley, 1970.

Kalman R.E. Kronecker invariants and feedback. In: Ordinary Differential Equations / ed. L.Weiss. New York: Academic Press, 1972. P. 452–471.

Moore B.C. On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment // IEEE Trans. Aut. Contr. 1976. Vol.AC-21. P. 689–692. https://doi.org/10.1109/TAC.1976.1101355

Srinathkumar S. Eigenvalues/Eigenvector Assignment Using Outback Feedback. National Aeronautics and Space Administration. US, 1978. https://doi.org/10.1109/TAC.1978.1101685

Kautsky J., Nichols N.K., Van Dooren P. Robust pole assignment in linear state feedback // Int. J. Control. 1985. Vol. 41, No. 5. P. 1129–1155. https://doi.org/10.1080/0020718508961188

Зайцев В.А. Модальное управление линейным дифференциальным уравнением с неполной обратной связью // Дифф. уравнения. 2003. Т. 39, №1. С. 133–135.

Зайцев В.А. Об управлении спектром и стабилизации билинейных систем // Вестник Удмуртского университета. Математика, механика, компьютерные науки. 2008. №2. С. 49–51. https://doi.org/10.20537/vm080217

Зайцев В.А. Управление спектром в линейных системах с неполной обратной связью // Дифф. уравнения. 2009. Т. 45, №9. С. 1320–1328.

Зайцев В.А. Управление спектром в билинейных системах // Дифф. уравнения. 2010. Т. 46, №7. С. 1061–1064.

Зайцев В.А. Необходимые и достаточные условия в задаче управления спектром // Дифф. уравнения. 2010. Т. 46, №12. С. 1789–1793.

Yang K., Orsi R. Generalized pole placement via based on projections // Automatica. 2006. Vol. 42. P. 2143–2150. https://doi.org/10.1016/j.automatica.2006.06.021

Мисриханов М.Ш., Рябченко В.Н. Размещение полюсов при управлении большой энергетической системой // Автоматика и телемеханика. 2011. №10. С. 129–153.

Schmid R., Ntogramatzidis L., Ngyen T., Pandey A. A unified method for optimal arbitrary placement // Automatica. 2014. Vol. 50. P. 2150–2154. https://doi.org/10.1016/j.automatica.2014.06.006

Зубов Н. Е., Микрин Е.А., Мисриханов М.Ш., Рябченко В.Н. Управление конечными собственными значениями дескрипторной системы // Доклады Академии наук. 2015. Т. 460, №4. С. 381–384. https://doi.org/10.7868/S0869565215040076

Гантмахер Ф.Р. Теория матриц. М.: Наука, 1967.

Belozyorov V.Ye. New solution method of linear static output feedback design problem for linear control systems // Linear Algebra and its Applications. 2016. Vol. 54. P. 204–227. https://doi.org/10.1016/j.laa.2016.04.001

Mostafa, El-Sayed M.E.M., Tawhid A., Elwan E.R. Nonlinear Conjugate Grradient Methods For the Output Feedback Pole Assignment Problem // Pacific Journal Optimization. 2016. Vol. 12, No. 1. P. 55–85.

Yannakoudacis A.G. The static output feedback from the invariant point of view // IMA Journal of Mathematical Control and Information. 2016. Vol. 33. P. 639–669. https://doi.org/10.1093/imamci/dnu057

Зайцев В.А., Ким И.Г. Задача назначения конечного спектра в линейных системах запаздывания по состоянию при помощи статической обратной связи по выходу // Вестник Удмуртского университета. Математика, механика, компьютерные науки. 2016. Т. 26, №4. С. 463–473. https://doi.org/10.20537/vm160402

Зайцев В.А., Ким И.Г. О назначении произвольного спектра в линейных стационарных системах с соизмеримыми запаздываниями по состоянию при помощи статической обратной связи по выходу // Вестник Удмуртского университета. Математика, механика, компьютерные науки. 2017. Т. 27, №3. С. 315–325. https://doi.org/10.20537/vm170303

Leonov G.A., Shumafov M.M., Kuznetsov N.V. A short survey of delayed feedback stabilization // 1st IFAC Conference on Modeling, Identification and Control of Nonlinear Systems. St. Petersburg, June 24–26, 2015. P. 716–719.

Pyragas K. Continuos control of chaos by selfcontrolling feedback // Phys. Lett. A. 1992. Vol. 170. P. 421–428. https://doi.org/10.1016/0375-9601(92)90745-8


References

Bernstein D.S., “Some Open Problems in Matrix Theory Arising in Linear Systems and Control”, Linear Algebra and its Applications 162–164, 409–432 (1992). https://doi.org/10.1016/0024-3795(92)90388-Q

Blondel V., Gevers M., Lindquist A., “Survey on the state of the systems and control”, European J. Contol 1, 5–23 (1995). https://doi.org/10.1016/S0947-3580(95)70004-8

Syrmos V.L., Abdallah C.T., Dorato P., Grigoriadis K., “Static Output Feedback. A Survey”, Automatica 33(2), 125–137 (1997). https://doi.org/10.1016/S0005-1098(96)00141-0

Open Problems in Mathematical Systems and Control Theory (ed. by V.D. Blondel, E.D. Sontag, M. Vidyasagar, J.C. Willems, Springer, London, 1999).

Polyak B.T., Shcherbakov P.S., “Hard problems in linear control theory: possible approaches to solution”, Autom. Remote Control 66(5), 681–718 (2005).

Brockett R., A stabilization problem. In book: Open Problems in Mathematical Systems and Control Theory (Springer, London, 1999). https://doi.org/10.1007/978-1-4471-0807-8_16

Leonov G.A., “Brockett’s Problem in the Theory of Stability of Linear Differential Equations”, St. Petersburg Mathematical Journal 13(4), 613–628 (2001).

Leonov G.A., “The Brockett stabilization problem”, Autom. Remote Control 62(5), 847–849 (2001).

Leonov G.A., “The Brockett Problem in the Theory of Nonstationary Stabilization of Linear Differential Equations”, Amer. Math. Soc. Transl. 205(2), 163–173 (2002). https://doi.org/10.1090/trans2/205/08

Leonov G.A., “The Brockett Problem for Linear Discrete Control Systems”, Autom. Remote Control 63(5), 777–781 (2002).

Leonov G.A., Shumafov M.M., Problems of stabilization of linear controllable systems (St. Petersburg University Press, St. Petersburg, 2002). (In Russian)

Moreau L., Aeyels D., “Stabilization by means of periodic output feedback”, Proc. of Conference of Decision and Control (CDC). Phoenix, 1999, December 7–10, 108–109 (1999).

Moreau L., Aeyels D., “A note on stabilization by periodic output feedback for third-order systems”, Proc. of the 14th International Symposium of Mathematical Theory of Networks and Systems (MTNS). Perpignan, 2000, 19–23 June, 2 pp. (2000).

Moreau L., Aeyels D., “Periodic output feedback stabilization of single-input single-output continuous-time systems with odd relative degree”, Systems & Control Letters 51(5), 395–406 (2004). https://doi.org/10.1016/j.sysconle.2003.10.001

Boikov I.V., “The Brockett stabilization problem”, Autom. Remote Control 66(5), 746–751 (2005).

Boikov I.V., “The Brockett stabilization problem for the system of nonlinear differential equations with delay”, Izvestiya vuzov, Povolzhskii region, Fisiko-matemat. Nauki 4(20), 3–13 (2011). (In Russian)

Insperger T., Stepan G., “Brockett problem for systems with feedback delay”, Proc. of the 17th World Congress of the Intern. Fed. of Aut. Contr. (IFAC), Seoul, 2008, July 6–11, 11491–11496 (2008). https://doi.org/10.3182/20080706-5-KR-1001.01947

Zubov V.I., Theory of optimal control (Sudostroenie Publ., Leningrad, 1966). (In Russian)

Wonham W.M., “On Pole Assignment in Multi-Input Controllable Linear Systems”, IEEE Trans. Aut. Contr. AC-12(6), 660–665 (1967). https://doi.org/10.1109/TAC.1967.1098739

Hautus M.L.J., “Controllability and observability conditions of linear autonomous systems”, Nedert. Acad. Wetensch. Proc. Ser. A 72, 443–448 (1969). https://doi.org/10.1016/S1385-7258(70)80049-X

Kailath T., Linear Systems (Englewood Cliffs, Prentice-Hall, N. J., 1980).

Kalman R.E., “Contribution to the theory of optimal theory”, Bol. Soc. Mat. Mexicana 5, 102–119 (1960).

Kwakernaak H., Sivan R., Linear optimal control (Wiley Interscience, New York, 1972).

Kuzmin P.A., Small oscillations and stability of motion (Nauka Publ., Moscow, 1973). (In Russian)

Helmke U., Anderson B., “Hermitian pencils and output feedback stabilization of scalar systems”, Int. J. Control 56, 857–876 (1992). https://doi.org/10.1080/00207179208934347

Perez F., Abdallah C., Dorato P., Docambo D., “Algebraic testsfor output stabilizability”, Proc. 32nd IEEE Conf. on Decision and Control, San Antonio, TX, 2385–2386 (1993).

Kucera V., Souza C., “A necessary and sufficient condition for output feedback stabilizability”, Automatica 31, 1357–1359 (1995). https://doi.org/10.1016/0005-1098(95)00048-2

Yakubovich V.A., Leonov G.A., Gelig A.Kh., Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities (World Scientific, Singapore, 2004).

Trofino-Neto A., Kucera V., “Stabilization via static output feedback”, IEEE Trans. Aut. Control AC-38, 764–765 (1993). https://doi.org/10.1109/9.277243

Cao Y.Y., Sun Y.-X., Mao W.-J., “A new necessary and sufficient condition for static output feedback stabilizability and comments on “Stabilization via static Output feedback”, IEEE Trans. Aut. Control AC-43(8), 1110–1112 (1998). https://doi.org/10.1109/9.704983

Iwasaki T., Skelton R., “Parametrization of all stabilizing controllers via quadratic Lyapunov functions”, J. Optim. Theory Appl. 77, 291–307 (1995). https://doi.org/10.1007/BF02192228

El-Chaoui L., Gahinet P., “Rank minimization under LMI constraints: a framework for output feedback problems”, Proc. Eur. Control Conf. Groningen, 1993, 1176–1179 (1993).

Davison E., “An automatic way of finding optional control systems for large multi-variable plants”, Proc. IFAC Tokyo Symp. Control, 357–373 (1965).

Anderson B., Bose N., Jury E., “Output feedback stabilization and related problems — solution via decision methods”, IEEE Trans. Aut. Control AC-20, 53–65 (1975). https://doi.org/10.1109/TAC.1975.1100846

Anderson B.D.O., Clements J.C., “Algebraic characterization of fixed modes in decentralized control”, Automatica 17, 703–712 (1981). https://doi.org/10.1016/0005-1098(81)90017-0

Byrnes C.I., Anderson B.D.O., “Output feedback and generic stabilizability”, SIAM J. Contr. Optim. 11, 362–380 (1984). https://doi.org/10.1137/0322024

Anderson B.D.O., Scott R.W., “Output feedback stabilization — solution by algebraic geometry methods”, Proc. of the IEEE 65, 849–861 (1977). https://doi.org/10.1109/PROC.1977.10581

Wu J.-W., Lian K.-Y., Lancaster P., “A stabilization criterion for matrices”, Linear Algebra and its Applications 422, 22–28 (2007). https://doi.org/10.1016/j.laa.2006.09.002

Crauel H., Damm T., Ilchmann A., “Stabilization of linear systems by rotation”, J. Diff. Equations 234, 412–438 (2007). https://doi.org/10.1016/j.jde.2006.12.005

Meerkov S.M., “Vibrational control”, Autom. Remote Control 34(2), 201–209 (1973).

Meerkov S.M., “Vibrational control theory”, J. Franklin Inst. 3(2), 117–128 (1977). https://doi.org/10.1016/0016-0032(77)90040-0

Tamaseviciute E., Tamasevicius A., “Stabilizing uncertain steady states of some dynamical systems by means of proportional feedback”, Nonlinear Analysis: Modeling and Control 18(1), 86–98 (2013). https://doi.org/10.15388/NA.18.1.14034

Blondel V., Simultaneous Stabilization of Linear Systems (Springer-Verlag, London, Berlin, Heidelberg, 1994).

Nett C., Bernstein D., Haddad W., “Minimal complexity control law synthesis. Pt. 1: Problem formulation and reduction to optimal static output feedback”, Proc. American Contr. Conf., Pittsburg, 1989, 2056–2064 (1989). https://doi.org/10.23919/ACC.1989.4790528

Martensson B., “The order of any stabilizing regulator is sufficient a priori information for adaptive stabilization”, Syst. Control Lett. 6, 87–91 (1985). https://doi.org/10.1016/0167-6911(85)90002-7

Arnol’d V.I., Ordinary differential equations (3rd ed., Springer-Verlag, 1991).

Stephenson A., “A new type of dynamical stability”, Mem. Proc. Manchr. Cit. Phil. Soc. 52, 1907–1908 (1908).

Kapitsa P.L., “Dynamical stability of pendulum under oscillating suspension point”, Journ. experm. and theor. physics 21(5), 588–598 (1951). (In Russian)

Leonov G.A., Shumafov M.M., Methods of stabilization of linear controllable systems (St. Petersburg Univ. Press, St. Petersburg, 2005).

Kalman R.E., Falb P.L., Arbib M.A., Topics in Mathematical System Theory (MC Graw Hill Book Company, New York, 1969).

Rissanen J., “Control system synthesis by analogue computer based on the “generalized linear feedback control” concept”, Proc. Symp. Analog. Computation Applied to the Study Chemical Processes. Intern. Seminar, Brussels, 1960, 1–13 (1960).

Rosenbrock H.H., “Distinctive processes in process control”, Chem. End. Prog. 58, 43–50 (1962).

Kalman R.E., “Ljapunov Functions for the problem of Lur’e in Automatic Control”, Proc. of the Nat. Acad. Sci. of USA 49(2), 201–205 (1963). https://doi.org/10.1073/pnas.49.2.201

Popov V.M., “Hyperstability and optimality of automatic systems with several control functions”, Rev. Roum. Sci. Tech. Ser. Electrotech. Energ. 9, 629–690 (1964).

Langenhop C.E., “On the stabilization of linear systems”, Proc. Amer. Math. Soc. 15(5), 735–742 (1964). https://doi.org/10.1090/S0002-9939-1964-0168408-8

Simon J.D., Mitter S.K., “A theory of modal control”, Inform. Contr. 13, 316–353 (1968). https://doi.org/10.1016/S0019-9958(68)90834-6

Brunovsky P., “A classification of linear controllable systems”, Kybernetika 6(3), 173–187 (1970).

Chen C.T., “A note on pole assignment”, IEEE Trans. Aut. Contr. AC-12, 597–598 (1968). https://doi.org/10.1109/TAC.1968.1099009

Davison E.J., “On Pole Assignment in Multivariable Linear Systems”, IEEE Trans. Aut. Contr. AC-13, 747–748 (1968). https://doi.org/10.1109/TAC.1968.1099056

Heymann M., “Comments “On pole assignment in multi-input controllable linear systems”, IEEE Trans. Aut. Contr. AC-13, 748–749 (1968). https://doi.org/10.1109/TAC.1968.1099017

Andreev Yu.N., Control of finite-dimensional linear objects (Nauka Publ., Moscow, 1976). (In Russian)

Wonham W.M., Linear Multivariable Control: a Geometric Approach (Springer-Verlag, New York-Heidelberg-Berlin, 1979). https://doi.org/10.1007/978-1-4684-0068-7

Smirnov E.Ya., The stabilization of program motions (St. Petersburg Univ. Press, St. Petersburg, 1977). (In Russian)

Aksenov G.S., “On the problem of stabilization of the linear object of control”, Bulletin of Leningrad State University, issue 7, 5–8 (1977). (In Russian)

Leonov G.A., Shumafov M.M., “Elementary proof of the theorem on stabilizability of linear controllable systems”, The Bulletin of the Saint-Petersburg University, Ser. Mathematics, Mechanics and Astronomy, issue 3 (17), 56–68 (2003). (In Russian)

Leonov G.A., Shumafov M.M., “Algorithm of step-by-step stabilization of linear object of control”, Izvest. Vuzov. North Caucasian Region. Natural Sciences (2), 14–19 (2005). (In Russian)

Kabamba R.T., Meerkov S.M., Roh E.K., “Pole Placement Capabilities of Vibrational Control”, IEEE Trans. Aut. Contr. AC-43(9), 1256–1261 (1998). https://doi.org/10.1109/9.718610

Davison E.J., “On Pole Assignment in Linear Systems with Incomplete State Feedback”, IEEE Trans. Aut. Contr. AC-15, 348–351 (1970). https://doi.org/10.1109/TAC.1970.1099458

Davison E.J., Chatterjee R., “A Note on Pole Assignment in Linear Systems with Incomplete State Feedback”, IEEE Trans. Aut. Contr. AC-16, 98–99 (1971). https://doi.org/10.1109/TAC.1971.1099652

Davison E.J., “An Algorithm for the Assignment of Closed-Loop Poles Using Output Feedback in Large Multivariable Systems”, IEEE Trans. Aut. Contr. AC-18, 74–75 (1973). https://doi.org/10.1109/TAC.1973.1100212

Sridhar B., Lindorff D.P., “Pole placement with constant gain output feedback”, Int. J. Contr. 18, 993–1003 (1973). https://doi.org/10.1080/00207177308932575

Jameson A., “Design of a single-input system for specified roots using output feedback”, IEEE Trans. Aut. Contr. AC-15, 345–348 (1970). https://doi.org/10.1109/TAC.1970.1099454

Nandi A.K., Herzog J.H., “Comments on Design of a Single-Input System for Specified Roots Using Output Feedback”, IEEE Trans. Aut. Contr. AC-16, 384–385 (1971). https://doi.org/10.1109/TAC.1971.1099758

Davison E.J., Wang S.H., “On Pole Assignment in Linear Multivariable Systems Using Output Feedback”, IEEE Trans. Aut. Contr. AC-20, 516–518 (1975). https://doi.org/10.1109/TAC.1975.1101023

Kimura H., “On pole assignment by output feedback”, Int. J. Control 28, 11–22 (1978). https://doi.org/10.1080/00207177808922432

Brockett R., Byrnes C., “Multivariable Nyquist criteria, root loci, and pole placement: a geometric viewpoint”, IEEE Trans. Aut. Control AC-26, 271–284 (1981). https://doi.org/10.1109/TAC.1981.1102571

Shumacher J., “Compensator synthesis using (C, A, B)—pairs”, IEEE Trans. Aut. Contr. AC-25, 1133–1138 (1980). https://doi.org/10.1109/TAC.1980.1102515

Wang X., “Pole placement by static output feedback”, Math. Systems, Estimations and Control 2(2), 205–218 (1992).

Leventides J., Karcanias N., “Arbitrary pole placement via low order dynamic output feedback controllers: a solution in closed form”, Journ. Technical Report CEC/EL-NK/135 (City University, London, 1995).

Rosenthal J., Schumacher J.M., Willems J.C., “Generic eigenvalue assignment by memoryless real output feedback”, Systems & Control Letters 26, 253–260 (1995). https://doi.org/10.1016/0167-6911(95)00019-6

Willems J.C., “Generic eigenvalue assignability by real memoryless output feedback made simple”, Communications, Computation, Control and Signal Processing, 343–354 (Springer, N.Y., 1997). https://doi.org/10.1007/978-1-4615-6281-8_19

Leonov G.A., Shumafov M.M., Stabilization of Linear Systems (Cambridge Scientific Publishers, Cambridge, 2012).

Hermann R., Martin C., “Applications of algebraic geometry to systems theory: Part 1”, IEEE Trans. Aut. Contr. AC-22, 19–25 (1977). https://doi.org/10.1109/TAC.1977.1101395

Willems J.C., Hesselink W.H., “Generic properties of the pole placement problem”, Proc. of the 7th IFAC Congress, 1725–1729 (1978). https://doi.org/10.1016/S1474-6670(17)66142-1

Andry A.N., Shapiro E.Y., Chung J.C., “Eigenstructure Assignment for Linear Systems”, IEEE Trans. Aerospace & Electronic Systems Aes-19(5), 711–728 (1983). https://doi.org/10.1109/TAES.1983.309373

Rosenbrock H.H., State Space and Multivariable Theory (Wiley, New York, 1970).

Kalman R.E., Kronecker invariants and feedback. In: Ordinary Differential Equations, 452–471 (ed. L.Weiss, Academic Press, New York, 1972).

Moore B.C., “On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment”, IEEE Trans. Aut. Contr. AC-21, 689–692 (1976). https://doi.org/10.1109/TAC.1976.1101355

Srinathkumar S., Eigenvalues/Eigenvector Assignment Using Outback Feedback, National Aeronautics and Space Administration (US, 1978). https://doi.org/10.1109/TAC.1978.1101685

Kautsky J., Nichols N.K., Van Dooren P., “Robust pole assignment in linear state feedback”, Journ. Control 41(5), 1129–1155 (1985). https://doi.org/10.1080/0020718508961188

Zaitsev V.A., “Modal control of the linear differential equation with incomplete feedback”, Differentialnye uravneniya 39(1), 133–135 (2003). (In Russian)

Zaitsev V.A., “On controlling the spectrum and stabilization of bilinear”, Vestnik Udmurtskogo universiteta, Matematika, Mekhanika, Computer. Nauki 2, 49–51 (2008). (In Russian) https://doi.org/10.20537/vm080217

Zaytsev V.A., “Spectrum control in linear systems with incomplete feedback”, Differentialnye uravneniya 45(9), 1320–1328 (2009). (In Russian)

Zaitsev V.A., “The spectrum control in bilinear systems”, Differentialnye uravneniya 46(7), 1061–1064 (2010). (In Russian)

Zaitsev V.A., “Necessary and sufficient conditions of the spectrum control problem”, Differentialnye uravneniya 46(12), 1789–1793 (2010). (In Russian)

Yang K., Orsi R., “Generalized pole placement via based on projections”, Automatica 42, 2143–2150 (2006). https://doi.org/10.1016/j.automatica.2006.06.021

Misrikhanov M. Sh., Ryabchenko V.N., “Pole placement for controlling a large scale power system”, Autom. Remote Control 72(10), 2123–2146 (2011).

Schmid R., Ntogramatzidis L., Ngyen T., Pandey A., “A unified method for optimal arbitrary placement”, Automatica 50, 2150–2154 (2014). https://doi.org/10.1016/j.automatica.2014.06.006

Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N., “Controlling the finite eigenvalues of the descriptor system”, Doklady Akademy Nauk 460(4), 381–384 (2015). (In Russian) https://doi.org/10.7868/S0869565215040076

Gantmakher F.R., Matrix Theory (Nauka Publ., Moscow, 1967). (In Russian)

Belozyorov V.Ye., “New solution method of linear static output feedback design problem for linear control systems”, Linear Algebra and its Applications 54, 204–227 (2016). https://doi.org/10.1016/j.laa.2016.04.001

Mostafa El-Sayed M.E., Tawhid M.A., Elwan E.R., “Nonlinear Conjugate Grradient Methods For the Output Feedback Pole Assignment Problem”, Pacific Journal Optimization 12(1), 55–85 (2016).

Yannakoudacis A.G., “The static output feedback from the invariant point of view”, IMA Journal of Mathematical Control and Information 33, 639–669 (2016). https://doi.org/10.1093/imamci/dnu057

Zaitsev V.A., Kim I.G., “Pole assignment a finite spectrum in linear systems with delay in state by static feedback”, Vestnik Udmurtskogo universiteta, Matematika, Mekhanika, Computer. Nauki 26(4), 463–473 (2016). (In Russian) https://doi.org/10.20537/vm160402

Zaitsev V.A., Kim I.G., “Pole assignment an arbitrary spectrum in linear stationary systems with commensurable delays in state by static feedback”, Vestnik Udmurtskogo universiteta, Matematika, Mekhanika, Computer. Nauki 27(3), 315–325 (2017). (In Russian) https://doi.org/10.20537/vm170303

Leonov G.A., Shumafov M.M., Kuznetsov N.V., “A short survey of delayed feedback stabilization”, 1st IFAC Conference on Modeling, Identification and Control of Nonlinear Systems, St. Petersburg, June 24–26, 2015, 716–719 (2015).

Pyragas K., “Continuos control of chaos by selfcontrolling feedback”, Phys. Lett. A 170, 421–428 (1992). https://doi.org/10.1016/0375-9601(92)90745-8

Загрузки

Опубликован

28.11.2019

Как цитировать

Шумафов, М. М. (2019). Стабилизация линейных систем управления. Проблема назначения полюсов. Обзор. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 6(4), 564–591. https://doi.org/10.21638/11701/spbu01.2019.404

Выпуск

Раздел

Памяти Г. А. Леонова