Доказательство корректности одного из алгоритмов, улучшающего оценку скорости сходимости метода Зейделя
Аннотация
Статья посвящается методу Зейделя для решения системы линейных алгебраических уравнений x = Ax + f. Статья продолжает прошлую работу автора, в которой был предложен один из алгоритмов для получения оценки скорости сходимости метода Зейделя. Представляется более развернутое доказательство корректности предложенного алгоритма. Получаемая алгоритмом оценка несколько лучше оценки, известной из монографии Фаддеева Д.К., Фаддеевой В.Н. ¾Вычислительные методы линейной алгебры¿, однако для ее получения требуется отдельный итерационный процесс. Показывается, что предлагаемый итерационный процесс имеет как минимум линейную скорость сходимости, в которой один шаг процесса требует порядка O(n) операций, а скорость сходимости может быть оценена неравенством |μ(Ak+1)-μ∗| < C|μ(Ak)-μ∗|, где C = 1 - m5/12 , m — наименьший по модулю элемент матрицы A, μ∗ - предельное значение итерационного процесса (наилучшая оценка скорости сходимости метода Зейделя), μ(Ak) и μ(Ak+1) — оценки, получаемые соответственно на шагах k и k + 1 в данном итерационном процессе.
Скачивания
Библиографические ссылки
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.