Determination of the transition curve between flow modes during filtering an acid through a chemically active porous medium.

Authors

  • Rinat A. Plavnik Oil and gas centre of the Moscow Institute of Physics and Technology, 3, Dolgoprudnenskoe shosse, Moscow, 127204, Russian Federation
  • Ivan N. Zavialov Oil and gas centre of the Moscow Institute of Physics and Technology, 3, Dolgoprudnenskoe shosse, Moscow, 127204, Russian Federation
  • Andrey V. Konyukhov Joint Institute of High Temperatures of the Russian Academy of Sciences, 13, ul. Izhorskaya, Moscow, 125412, Russian Federation
  • Denis S. Vetoshkin Oil and gas centre of the Moscow Institute of Physics and Technology, 3, Dolgoprudnenskoe shosse, Moscow, 127204, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2021.214

Abstract

It is known that during the filtration flow, if the displacing liquid can chemically react with the skeleton while emitting a gas phase, then this flow mode may be unstable. During the filtration process, pressure fluctuations will be observed, and the displacing fluid will move in waves called “acid waves”. Our research suggests a simple theoretical model that gives a qualitative explanation of the causes of this phenomenon. We conducted laboratory simulations and detected the boundary of the appearance of “acid waves”, depending on the concentration of the chemically active component. At the same time the theoretical model can also predict the appearance of “acid waves” in the laboratory experiment, which will allow scaling the studied phenomenon in the future.

Keywords:

self-oscillating mode, acid treatment of an oil reservoir, porous medium

Downloads

Download data is not yet available.
 

References

Литература

1. Иконникова Л.Н., Золотухин А.Б. Оценка эффективности мероприятий по интенсификации добычи нефти при соляно-кислотной обработке. Часть 1. Нефтепромысловое дело, (5), 33–38 (2019). https://doi.org/10.30713/0207-2351-2019-5(605)-33-38

2. Карпунин Н.А., Рязанов А.А., Хромых Л.Н., Щукин Н.А. Современный опыт обработки призабойной зоны терригенного пласта кислотными композициями. Вестник евразийской науки 10 (4) (2018).

3. Литвин В.Т. Обоснование технологии интенсификации притока нефти для коллекторов баженовской свиты с применением кислотной обработки. Дисс... . канд. техн. наук. Национальный минерально-сырьевой университет "Горный" (2016).

4. Bityurin V.A., Velikodnyi V.Yu., Tolkunov B.N., Bykov A.A., Dyrenkov A.V., Popov V.V. Experimental study of the ignition of liquid hydrocarbon fuels and stabilization of their combustion by an arc discharge. Plasma physics reports 38 (13), 1073–1077 (2012).

5. Krikunova A.I. Effects of Gravity on Plane-Symmetric Rod-Stabilized Flame Stabilization. High Temperature 57, 430–437 (2019). https://doi.org/10.1134/S0018151X1903009X

6. Koldoba A.V., Koldoba Y.V. The propagation of weak concentration discontinuities in the isothermal flow of a multicomponent mixture in a porous medium with phase transitions. Journal of applied mathematics and mechanics 71 (3), 432–437 (2007). https://doi.org/10.1016/j.jappmathmech.2007.07.003

7. Jurak M., Koldoba A., Konyukhov A., Pankratov L. Nonisothermal immiscible compressible thermodynamically consistent two-phase flow in porous media. Comptes Rendus M´ecanique 34(12), 920–929 (2019).

8. Akhatov I. S., Kovaleva L.A., Valiullin R.A., Sharafutdinov R.F., Musin A.A., Zakirov M.F., Zinnatullin R.R., Khasanov M.M., Shaimardanov M.M., Evseeva M.Y., Lukin S.A., Volokitin Y.E., Ushakova A.S. Experimental and Mathematical Workflow in Modeling In-situ Combustion Processes for Unconventional Resources Recovery. IOR 2013 - 17th European Symposium on Improved Oil Recovery (2013). https://doi.org/10.3997/2214-4609.20142663

9. Rana C., De Wit A. Reaction-driven oscillating viscous fingering. Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (4), 043115 (2019). https://doi.org/10.1063/1.5089028

10. Невмержицкий Я.В. Применение метода линий тока для ускорения расчетов неизотермической нелинейной фильтрации. Компьютерные исследования и моделирование 10 (5), 709–728 (2018).

11. Nevmerzhitskiy Y. Development of Models for Filtration Simulation in Nonlinear Media. SPE Annual Technical Conference and Exhibition (2018). https://doi.org/10.2118/194047-STU

12. Zavialov I.N., Konyukhov A.V., Plavnik R.A., Plyashkov E.V. Laboratory study of oscillatory multiphase flow in porous medium with chemically active skeleton. Physica Scripta 94 (4), 044005 (2019). https://dx.doi.org/10.1088/1402-4896/aafd5e

13. Konyukhov A.V., Zavialov I.N. Numerical investigation of oscillatory multiphase flow in porous medium with chemically active skeleton. Journal of Physics: Conference Series. IOP Publishing 774 (1), 012059 (2016).

14. Zavialov I., Varov A., Salikhov R., Antsiferov E., Konyukhov A. Laboratory modeling of flow with gas-producing reaction in porous media. Journal of Porous Media 21 (10), 887–893 (2018). https://doi.org/10.1615/JPorMedia.2018018942

15. De Oliveira T. J. L., De Melo A.R., Oliveira J.A.A., Pereira A.Z. Numerical Simulation of the Acidizing Process and PVBT Extraction Methodology Including Porosity/Permeability and Mineralogy Heterogeneity. SPE International Symposium and Exhibition on Formation Damage Control (2012).

References

1. Ikonnikova L.N., Zolotukhin A.B. Evaluating the effectiveness of measures to intensify oil production during salt-acid treatment. Part 1. Neftepromyslovoe delo, (5), 33–38 (2019). https://doi.org/10.30713/0207-2351-2019-5(605)-33-38 (In Russian)

2. Karpunin N.A., Ryazanov А.А., Khromykh L.N., Schukin N.А. Modern experience of processing the bottom hole zone of a terrigenous formation with acid compositions. Bulletin of Eurasian science 10 (4) (2018). (In Russian)

3. Litvin V.Т. Justification of oil inflow intensification technology for reservoirs of the Bazhenov formation using acid treatment. PhD thesis. National mineral resource University “Gorny” (2016).

4. Bityurin V.A., Velikodnyi V.Yu., Tolkunov B.N., Bykov A.A., Dyrenkov A.V., Popov V.V. Experimental study of the ignition of liquid hydrocarbon fuels and stabilization of their combustion by an arc discharge. Plasma physics reports 38 (13), 1073–1077 (2012).

5. Krikunova A.I. Effects of Gravity on Plane-Symmetric Rod-Stabilized Flame Stabilization. High Temperature 57, 430–437 (2019). https://doi.org/10.1134/S0018151X1903009X

6. Koldoba A.V., Koldoba Y.V. The propagation of weak concentration discontinuities in the isothermal flow of a multicomponent mixture in a porous medium with phase transitions. Journal of applied mathematics and mechanics 71 (3), 432–437 (2007). https://doi.org/10.1016/j.jappmathmech.2007.07.003

7. Jurak M., Koldoba A., Konyukhov A., Pankratov L. Nonisothermal immiscible compressible thermodynamically consistent two-phase flow in porous media. Comptes Rendus M´ecanique 34(12), 920–929 (2019).

8. Akhatov I. S., Kovaleva L.A., Valiullin R.A., Sharafutdinov R.F., Musin A.A., Zakirov M.F., Zinnatullin R.R., Khasanov M.M., Shaimardanov M.M., Evseeva M.Y., Lukin S.A., Volokitin Y.E., Ushakova A.S. Experimental and Mathematical Workflow in Modeling In-situ Combustion Processes for Unconventional Resources Recovery. IOR 2013 - 17th European Symposium on Improved Oil Recovery (2013). https://doi.org/10.3997/2214-4609.20142663

9. Rana C., De Wit A. Reaction-driven oscillating viscous fingering. Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (4), 043115 (2019). https://doi.org/10.1063/1.5089028

10. Nevmerzhitskiy Y.V. Application of the current line method to accelerate calculations of nonisothermal nonlinear filtration. Computer research and modelling 10 (5), 709–728 (2018). (In Russian)

11. Nevmerzhitskiy Y. Development of Models for Filtration Simulation in Nonlinear Media. SPE Annual Technical Conference and Exhibition (2018). https://doi.org/10.2118/194047-STU

12. Zavialov I.N., Konyukhov A.V., Plavnik R.A., Plyashkov E.V. Laboratory study of oscillatory multiphase flow in porous medium with chemically active skeleton. Physica Scripta 94 (4), 044005 (2019). https://dx.doi.org/10.1088/1402-4896/aafd5e

13. Konyukhov A.V., Zavialov I.N. Numerical investigation of oscillatory multiphase flow in porous medium with chemically active skeleton. Journal of Physics: Conference Series. IOP Publishing 774 (1), 012059 (2016).

14. Zavialov I., Varov A., Salikhov R., Antsiferov E., Konyukhov A. Laboratory modeling of flow with gas-producing reaction in porous media. Journal of Porous Media 21 (10), 887–893 (2018). https://doi.org/10.1615/JPorMedia.2018018942

15. De Oliveira T. J. L., De Melo A.R., Oliveira J.A.A., Pereira A.Z. Numerical Simulation of the Acidizing Process and PVBT Extraction Methodology Including Porosity/Permeability and Mineralogy Heterogeneity. SPE International Symposium and Exhibition on Formation Damage Control (2012).

Published

2021-07-21

How to Cite

Plavnik, R. A., Zavialov, I. N., Konyukhov, A. V., & Vetoshkin, D. S. (2021). Determination of the transition curve between flow modes during filtering an acid through a chemically active porous medium. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8(2), 349–358. https://doi.org/10.21638/spbu01.2021.214

Issue

Section

Mechanics