Линейный фильтр Калмана-Бьюси с векторными авторегрессионными сигналом и шумом

Авторы

  • Татьяна Михайловна Товстик Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9

DOI:

https://doi.org/10.21638/spbu01.2021.110

Аннотация

Рассматривается линейная задача фильтрации Калмана-Бьюси для системы, в которой сигнал и шум являются векторными независимыми стационарными процессами авторегрессии, порядок которых больше единицы. Выводятся рекуррентные уравнения для фильтрации и ошибки фильтрации. Предлагается оптимальный способ задания начальных данных. Описывается пример, в котором алгоритм приводит к стационарному режиму на бесконечности, а также пример, в котором фильтрация Калмана-Бьюси невозможна в связи со стремлением ошибки фильтрации к бесконечности. Поведение сигнала и его фильтрации прослеживается при моделировании сигнала и шума в виде векторных гауссовских стационарных процессов авторегрессии. Приведенные примеры подтверждают теоретические выводы.

Ключевые слова:

фильтр Калмана-Бьюси, векторные стационарные процессы авторегрессии высокого порядка

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Литература

1. Колмогоров А.Н. Интерполирование и экстраполирование стационарных случайных про- цессов. Известия АН СССР. Серия математическая, (5), 3–14 (1941).

2. Wiener N. Extrapolation, interpolation and smoothing of stationary time-series. Cambridge (1949).

3. Розанов Ю.А. Стационарные случайные процессы. Москва, Наука (1990).

4. Товстик Т.М. Стационарные случайные процессы с рациональными спектральными плот- ностями. Санкт-Петербург, Изд-во С.-Петерб. ун-та (2000).

5. Kalman R.E. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 35–45 (1960).

6. Kalman R. E., Bucy R. S. New results in linear filtering and prediction theory. Trans. ASME, J. Basic Eng. 83 (1), 95–108 (1961).

7. Браммер К., Зиффлинг Г. Фильтр Калмана-Бьюси. Москва (1982).

8. Ширяев А.Н. Вероятность-2. Москва, Изд-во МЦНМО (2004).

9. Фомин В.Н. Операторные методы теории линейной фильтрации случайных процессов. Санкт-Петербург, Изд-во С.-Петерб. ун-та (1996).

10. Граничин О.Н. Введение в методы стохастической оптимизации и оценивания. Санкт- Петербург, Изд-во С.-Петерб. ун-та (2003).

11. Куликова М.В., Куликов Г.Ю. Численные методы нелинейной фильтрации для обработки сигналов и измерений. Вычислительные технологии 21 (4), 64–98 (2016).

12. Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley Interscience (2006).

13. Chui C.K., Chen G. Kalman Filtering with Real-Time Applications. In: Springer Series in Information Sciences, vol. 17. 4th ed. New York, Springer (2009).

14. Law K., Stuart A., Zygalakis K. Continuous Time: Filtering Algorithms. In: Data Assimilation, 187–206. Springer (2015).

15. Синицын И.Н., Синицын В.И., Корепанов Э.Р. Развитие теории фильтров Липцера- Ширяева. Автомат. и телемех., вып. 4, 37–51 (2020). https://doi.org/10.1134/S0005231019040030

16. Niedzwiecki M., Cisowski K. Adaptive scheme for elimination of broadband noise and impulsive disturbances from AR and ARMA signals. IEEE Trans. on Signal Proc. 44 (1), 528–537 (1996). https://doi.org/10.1109/78.489026

17. Arnold M., Miltner W.H.R., Witte H., Bauer R., Braun C. Adaptive AR Modeling of Nonstationary Time Series by Means of Kalman Filtering. IEEE Trans. on Biomedical Eng. 45 (5), 553–562 (1998). https://doi.org/10.1109/10.668741

18. Товстик Т.М. Фильтр Калмана-Бьюси с авторегрессионными сигналом и шумом. Вест- ник Санкт-Петербургского университета. Математика. Механика. Астрономия 5 (63), вып. 3, 452–463 (2018). https://doi.org/10.21638/11701/spbu01.2018.309

19. Tovstik T.M., Tovstik P.E., Shirinkina D.A. Linear generalized Kalman-Bucy filter. Abstracts of the Ninth Workshop on Simulation (2018).

20. Товстик Т.М., Товстик П. Е. Линейный обобщенный фильтр Калмана-Бьюси. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 6 (64), вып. 4, 636– 645 (2019). https://doi.org/10.21638/11701/spbu01.2019.409

21. Yule G.U. On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers. Phil. Trans. Series A 226, 267–298 (1927). https://doi.org/10.1098/rsta.1927.0007

22. Хеннан Э. Многомерные временные ряды, пер. с англ. Москва, Мир (1974).

References

1. Kolmogorov A.N. Interpolation and extrapolation of stationary random processes. Izvestija AN SSSR. Serija matematicheskaja, (5), 3–14 (1941). (In Russian)

2. Wiener N. Extrapolation, interpolation and smoothing of stationary time-series. Cambridge (1949).

3. Rozanov Yu.A. Stationary random processes. Moscow, Nauka Publ. (1990). (In Russian)

4. Tovstik T.M. Stationary random processes with rational spectral densities. St. Petersburg, St. Petersburg Univ. Publ. (2000). (In Russian)

5. Kalman R.E. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 35–45 (1960).

6. Kalman R. E., Bucy R. S. New results in linear filtering and prediction theory. Trans. ASME, J. Basic Eng. 83 (1), 95–108 (1961).

7. Brammer K., Siffling G. Kalman-Bucy filter. Deterministische Beobachtung und Stochastische Filterung. Munchen (1975). [Russ. ed.: Fil’tr Kalmana-B’jusi. Moscow (1982)].

8. Shiryaev A.N. Verojatnost’-2. Moscow Center for Cont. Math. Education Publ. (2004). (In Russian) [Engl. transl.: Shiryaev A.N. Probalility-2. New York, Springer-Verlag (2019)].

9. Fomin V.N. Operator methods in theory of linear filter of random processes. St. Petersburg, St. Petersburg Univ. Press (1996). (In Russian)

10. Granichin O.N. Optimal filter of random processes. St. Petersburg, St. Petersburg Univ. Press (2013). (In Russian)

11. Kulikova M., Kulikov G. Numerical methods for nonlinear filtering of signals and measurements. Computational Technologies 21 (4), 64–98 (2016). (In Russian)

12. Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley Interscience (2006).

13. Chui C.K., Chen G. Kalman Filtering with Real-Time Applications. In: Springer Series in Information Sciences, vol. 17. 4th ed. New York, Springer (2009).

14. Law K., Stuart A., Zygalakis K. Continuous Time: Filtering Algorithms. In: Data Assimilation, 187–206. Springer (2015).

15. Sinitsyn I.N., Sinitsyn V. I., Korepanov E.R. Extending the Theory of Liptser-Shiryaev Filter. Avtomat. i Telemekh., (4), 37–51 (2020). (In Russian) [Engl. transl.: Autom. Remote Control 81 (4), 602–613 (2020). https://doi.org/10.1134/S0005117920040037].

16. Niedzwiecki M., Cisowski K. Adaptive scheme for elimination of broadband noise and impulsive disturbances from AR and ARMA signals. IEEE Trans. on Signal Proc. 44 (1), 528–537 (1996). https://doi.org/10.1109/78.489026

17. Arnold M., Miltner W.H.R., Witte H., Bauer R., Braun C. Adaptive AR Modeling of Nonstationary Time Series by Means of Kalman Filtering. IEEE Trans. on Biomedical Eng. 45 (5), 553–562 (1998). https://doi.org/10.1109/10.668741

18. Tovstik T.M. Linear Kalman-Bucy Filter with Autoregressive Signal and Noise. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 5 (63), iss. 3, 452–463 (2018). https://doi.org/10.21638/11701/spbu01.2018.309 (In Russian) [Engl. transl.: Vestnik St. Petersb. Univ. Math. 51, iss. 3, 276–285 (2018). https://doi.org/10.3103/S1063454118030093].

19. Tovstik T.M., Tovstik P.E., Shirinkina D.A. Linear generalized Kalman-Bucy filter. Abstracts of the Ninth Workshop on Simulation (2018).

20. Tovstik T.M., Tovstik P.E. Linear generalized Kalman-Bucy filter. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 6 (64), iss. 4, 636–645 (2019). https://doi.org/10.21638/11701/spbu01.2019.409 (In Russian) [Engl. transl.: Vestnik St. Petersb. Univ. Math. 52, iss. 4, 401–408 (2019). https://doi.org/10.1134/S1063454119040113].

21. Yule G.U. On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers. Phil. Trans. Series A 226, 267–298 (1927). https://doi.org/10.1098/rsta.1927.0007

22. Hannan E. J. Multiple time series. John Wiley and Sons (1970). [Russ. ed.: Mnogomernye vremennye rjady. Moscow, Mir Publ. (1974)].

Загрузки

Опубликован

29.05.2021

Как цитировать

Товстик, Т. М. (2021). Линейный фильтр Калмана-Бьюси с векторными авторегрессионными сигналом и шумом. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 8(1), 111–122. https://doi.org/10.21638/spbu01.2021.110

Выпуск

Раздел

Математика

Наиболее читаемые статьи этого автора (авторов)