О свойствах некоторых методов обращения преобразования Лапласа
DOI:
https://doi.org/10.21638/spbu01.2023.104Аннотация
Рассматривается задача обращения интегрального преобразования Лапласа, относящаяся к классу некорректных задач. Интегральные уравнения сводятся к плохо обусловленным системам линейных алгебраических уравнений, неизвестными в которых являются либо коэффициенты разложения в ряд по специальным функциям, либо приближенные значения искомого оригинала в ряде точек. Описан метод обращения с помощью специальных квадратурных формул наивысшей степени точности и указаны характеристики точности и устойчивости этого метода. Построены квадратурные формулы обращения, приспособленные для обращения длительных и медленно протекающих процессов линейной вязкоупругости. Предложен метод деформации контура интегрирования в формуле обращения Римана-Меллина, приводящий задачу к вычислению определенных интегралов и позволяющий получить оценки погрешности. Описан метод определения возможных точек разрыва оригинала и вычисления величины скачка в этих точках.Ключевые слова:
преобразование Лапласа, обращение преобразования Лапласа, система линейных алгебраических уравнений, интегральные уравнения первого рода, квадратурные формулы, некорректные задачи, плохо обусловленные задачи, метод регуляризации
Скачивания
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.