Asymptotically almost periodic solutions of fractional evolution equations
DOI:
https://doi.org/10.21638/spbu01.2021.309Abstract
We study the asymptotic behavior of solutions of nonlinear fractional evolution equations in Banach spaces. Asymptotically almost periodic solutions on half line are obtained by establishing a sharp estimate on the resolvent operator family of evolution equations. In particular, when the semigroup generated by A is exponentially stable then the conditions of the existence asymptotically almost periodic solutions is satisfied. An application to a fractional partial differential equation with initial boundary condition is also considered.Keywords:
fractional evolution equations, almost periodic solutions, resolvent operator family
Downloads
References
Литература/References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.