Boundary conditions for fluid-dynamic parameters of a single-component gas flow with vibrational deactivation on a solid wall

Authors

  • Liia A. Shakurova St Petersburg State University, 7–9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Elena V. Kustova St Petersburg State University, 7–9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.216

Abstract

Boundary conditions for fluid-dynamic parameters of a strongly non-equilibrium singlecomponent rarefied gas flow in the slip regime are obtained using kinetic-theory methods. The gas flow is described in the frame of the state-to-state approach assuming vibrational energy exchange as the slow relaxation process. The set of governing equations including conservation equations coupled with additional relaxation equations for vibrational state populations is presented. The gas-solid surface interaction is considered on the basis of the specular-diffusive model, and possible vibrational deactivation/excitation processes on the wall are taken into account. The obtained boundary conditions depend on the accommodation and deactivation coefficients along with the transport coefficients such as the multi-component vibrational energy diffusion and thermal diffusion coefficients; the thermal conductivity; the bulk and shear viscosity coefficients and the relaxation pressure. The dependence of boundary conditions on the normal mean stress has been obtained for the first time. In the particular case of the gas without internal degrees of freedom, the slip velocity and the temperature jump can be reduced to the well-known in the literature expressions. Implementation of the state-specific boundary conditions should not cause additional computational costs in numerical simulations of viscous flows in the state-to-state approach, since the slip/jump equations depend on the transport coefficients which have to be evaluated regardless of the boundary conditions used in the code.

Keywords:

non-equilibrium flow, state-to-state approach, boundary conditions, concentration jump, slip velocity, temperature jump

Downloads

Download data is not yet available.
 

References

Литература

1. Нагнибеда Е.А., Кустова Е.В. Кинетическая теория процессов переноса и релаксации в потоках неравновесных реагирующих газов. Санкт-Петербург, Изд-во С.-Петерб. ун-та (2003).

2. Kunova O., Kustova E., Mekhonoshina M., Nagnibeda E. Non-equilibrium kinetics, diffusion and heat transfer in shock heated flows of N2/N and O2/O mixtures. Chemical Physics 463, 70–81 (2015).

3. Мишина А.И., Кустова Е. В. Пространственно однородная релаксация молекул CO с учетом резонансных VE-обменов. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 4 (62), вып. 2, 310–322 (2017). https://doi.org/10.21638/11701/spbu01.2017.215

4. Panesi M., Munaf`o A., Magin T.E., Jaffe R. L. Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method. Phys. Rev. E 90, 013009 (2014). https://doi.org/10.1103/PhysRevE.90.013009

5. Kadochnikov I., Arsentiev I. Kinetics of nonequilibrium processes in air plasma formed behind shock waves: state-to-state consideration. J. Phys. D: Appl. Phys. 51 (37), 374001 (2018).

6. Campoli L., Kunova O., Kustova E., Melnik M. Models validation and code profiling in state-to-state simulations of shock heated air flows. Acta Astronautica 175, 493–509 (2020). https://doi.org/10.1016/j.actaastro.2020.06.008

7. Park C. Thermochemical relaxation in shock tunnels. J. Thermophys. Heat Trans. 20 (4), 689– 698 (2006). https://doi.org/10.2514/1.22719

8. Мишина А.И., Кустова Е.В. Кинетика молекул CO с учетом резонансных VE-обменов при неравновесном течении в соплах. Журнал технической физики 88 (3), 342–349 (2018).

9. Нагнибеда Е.А., Папина К. В. Неравновесная колебательная и химическая кинетика в потоках воздуха в соплах. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 5 (63), вып. 2, 287–299 (2018). https://doi.org/10.21638/11701/spbu01.2018.209

10. Silva T., Grofulovi´c M., Klarenaar B. L. M., Morillo-Candas A. S., Guaitella O., Engeln R., Pintassilgo C.D., Guerra V. Kinetic study of low-temperature CO2 plasmas under non-equilibrium conditions. I. Relaxation of vibrational energy. Plasma Sources Sci. Technol. 27 (1), 015019 (2018).

11. Kustova E., Mekhonoshina M., Oblapenko G. On the applicability of simplified state-to-state models of transport coefficients. Chemical Physics Letters 686, 161–166 (2017).

12. Cacciatore M., Rutigliano M., Billing G.D. Eley-Rideal and Langmuir-Hinshelwood recombination coefficients for oxygen on silica surface. J. Thermophys. Heat Trans. 13, 195–203 (1999).

13. Armenise I., Barbato M., Capitelli M., Kustova E.V. State to State Catalytic Models, Kinetics and Transport in Hypersonic Boundary Layers. J. Thermophys. Heat Trans. 20 (3), 465–476 (2006).

14. Kovalev V. L., Krupnov A.A., Pogosbekyan M.Yu., Sukhanov L. P. Analysis of heterogeneous recombination of oxygen atoms on aluminum oxide by methods of quantum mechanics and classical dynamics. Acta Astronautica 68, 686–690 (2011).

15. Коган М.Н. Динамика разреженного газа. Москва, Наука (1967).

16. Шидловский В.П. Введение в динамикур азреженного газа. Москва, Наука (1965).

17. Ферцигер Дж., Капер Г. Математическая теория процессов переноса в газах, пер. с англ . Москва, Мир (1976).

18. Patterson N. Molecular Flow of Gases. New York, Wiley (1956).

19. Grad H. On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2, 331–407 (1949).

20. Maxwell J. K. On stresses in rarefied gases arising from inequalities of temperature. Proceedings of the Royal Society of London 27, 304–308 (1878).

21. Scott C. Wall boundary equations with slip and catalysis for multicomponent, nonequilibrium gas flows. NASA TMX-58111 (1973).

22. Gupta R., Scott C., Moss J. Slip-boundary equations for multicomponent nonequilibrium airflow. NASA Technical Paper, no. 85820 (1985).

23. Zade A., Renksizbulut M., Friedman J. Slip/jump boundary conditions for rarefied reacting/non-reacting multi-component gaseous flows. Int. J. Heat Mass Transf. 51, 5063–5071 (2008).

24. Campoli L., Oblapenko G., Kustova E. KAPPA: kinetic approach to physical processes in atmospheres library in C++. Comput. Phys. Comm. 236, 244–267 (2019).

References

1. Nagnibeda E.A., Kustova E.V. Kineticheskaja teorija processov perenosa i relaksacii v potokah neravnovesnyh reagirujushhih gazov. St Petersburg, StPetersburg University Press (2003). (In Russian) [Eng. transl.: Nagnibeda E.A., Kustova E.V. Nonequilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes. Berlin, Heidelberg, Springer-Verlag (2009)].

2. Kunova O., Kustova E., Mekhonoshina M., Nagnibeda E. Non-equilibrium kinetics, diffusion and heat transfer in shock heated flows of N2/N and O2/O mixtures. Chemical Physics 463, 70–81 (2015).

3. Mishina A. I., Kustova E.V. Spatially Homogeneous Relaxation of CO Molecules with Resonant VE Transitions. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 4 (62), iss. 2, 310–322 (2017). https://doi.org/10.21638/11701/spbu01.2017.215 (In Russian) [Eng. transl.: Vestnik St Petersburg University, Mathematics 50 (2), 188–197 (2017). https://doi.org/10.3103/S1063454117020108].

4. Panesi M., Munaf`o A., Magin T.E., Jaffe R. L. Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method. Phys. Rev. E 90, 013009 (2014). https://doi.org/10.1103/PhysRevE.90.013009

5. Kadochnikov I., Arsentiev I. Kinetics of nonequilibrium processes in air plasma formed behind shock waves: state-to-state consideration. J. Phys. D: Appl. Phys. 51 (37), 374001 (2018).

6. Campoli L., Kunova O., Kustova E., Melnik M. Models validation and code profiling in state-to-state simulations of shock heated air flows. Acta Astronautica 175, 493–509 (2020). https://doi.org/10.1016/j.actaastro.2020.06.008

7. Park C. Thermochemical relaxation in shock tunnels. J. Thermophys. Heat Trans. 20 (4), 689– 698 (2006). https://doi.org/10.2514/1.22719

8. Mishina A. I., Kustova E.V. Kinetics of CO Molecules Taking into Account Resonant VE Exchanges in a Nonequilibrium Nozzle Flow. Zhurnal Tekhnicheskoi Fiziki 88 (3), 342–349 (2018). (In Russian) [Eng. transl.: Tech. Phys. 63, 331–338 (2018). https://doi.org/10.1134/S1063784218030155].

9. Nagnibeda E.A., Papina K. V. Nonequilibrium vibrational and chemical kinetics in air flows in nozzles. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 5 (63), iss. 2, 287–299 (2018). https://doi.org/10.21638/11701/spbu01.2018.209 (In Russian)

10. Silva T., Grofulovi´c M., Klarenaar B. L. M., Morillo-Candas A. S., Guaitella O., Engeln R., Pintassilgo C.D., Guerra V. Kinetic study of low-temperature CO2 plasmas under non-equilibrium conditions. I. Relaxation of vibrational energy. Plasma Sources Sci. Technol. 27 (1), 015019 (2018).

11. Kustova E., Mekhonoshina M., Oblapenko G. On the applicability of simplified state-to-state models of transport coefficients. Chemical Physics Letters 686, 161–166 (2017).

12. Cacciatore M., Rutigliano M., Billing G.D. Eley-Rideal and Langmuir-Hinshelwood recombination coefficients for oxygen on silica surface. J. Thermophys. Heat Trans. 13, 195–203 (1999).

13. Armenise I., Barbato M., Capitelli M., Kustova E.V. State to State Catalytic Models, Kinetics and Transport in Hypersonic Boundary Layers. J. Thermophys. Heat Trans. 20 (3), 465–476 (2006).

14. Kovalev V. L., Krupnov A.A., Pogosbekyan M.Yu., Sukhanov L. P. Analysis of heterogeneous recombination of oxygen atoms on aluminum oxide by methods of quantum mechanics and classical dynamics. Acta Astronautica 68, 686–690 (2011).

15. Kogan M.N. Dinamika razrezhennogo gaza. Moscow, Nauka Publ. (1967). (In Russian) [Eng. transl.: Kogan M.N. Rarefied Gas Dynamics. Boston, MA, Springer (1969)].

16. Shidlovskiy V. P. Vvedenie v dinamiku razrezhennogo gaza. Moscow, Nauka Publ. (1965). (In Russian) [Eng. transl.: Shidlovskiy V.P. Introduction to dynamics of rarefied gases. New York, Elsevier (1967)].

17. Ferziger J., Kaper H. Mathematical Theory of Transport Processes in Gases. London, North- Holland Publ. (1972). [Rus. ed.: Ferziger J., Kaper H. Matematicheskaja teorija processov perenosa v gazah. Moscow, Mir Publ. (1976)].

18. Patterson N. Molecular Flow of Gases. New York, Wiley (1956).

19. Grad H. On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2, 331–407 (1949).

20. Maxwell J. K. On stresses in rarefied gases arising from inequalities of temperature. Proceedings of the Royal Society of London 27, 304–308 (1878).

21. Scott C. Wall boundary equations with slip and catalysis for multicomponent, nonequilibrium gas flows. NASA TMX-58111 (1973).

22. Gupta R., Scott C., Moss J. Slip-boundary equations for multicomponent nonequilibrium airflow. NASA Technical Paper, no. 85820 (1985).

23. Zade A., Renksizbulut M., Friedman J. Slip/jump boundary conditions for rarefied reacting/non-reacting multi-component gaseous flows. Int. J. Heat Mass Transf. 51, 5063–5071 (2008).

24. Campoli L., Oblapenko G., Kustova E. KAPPA: kinetic approach to physical processes in atmospheres library in C++. Comput. Phys. Comm. 236, 244–267 (2019).

Published

2022-07-06

How to Cite

Shakurova, L. A., & Kustova, E. V. (2022). Boundary conditions for fluid-dynamic parameters of a single-component gas flow with vibrational deactivation on a solid wall. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(2), 366–377. https://doi.org/10.21638/spbu01.2022.216

Issue

Section

Mechanics