Fracture mechanics characterization of mortar nanocomposites reinforced with carbon nanotubes

Authors

  • Emmanuel Gdoutos Academy of Athens, 28, Panepistimiou str., Athens, 106 79, Greece
  • Maria Konsta-Gdoutos University of Texas at Arlington, 701, S. Nedderman Drive, Arlington, Texas, 76019, USA

DOI:

https://doi.org/10.21638/spbu01.2022.306

Abstract

The objective of this paper is to provide a fracture mechanics characterization of mortar nanocomposites reinforced with multiwall carbon nanotubes (MWCNTs). The critical stress intensity factor, KIc, the strain energy release rate, GIc, the effective crack length, ac, and the crack tip opening displacement, CTODc are determined using three-point bend specimens. It was established that reinforcement of mortar with MWCNTs provides excellent improvement in the above fracture mechanics quantities.

Keywords:

fracture mechanics, multi-wall carbon nanotubes, stress intensity factor, energy release rate, crack tip opening displacement, mortar nanocomposites, cementitious materials

Downloads

Download data is not yet available.
 

References

Литература

1. Konsta-Gdoutos M.S., Metaxa Z.S., Shah S.P. Highly dispersed carbon nanotubes reinforced cement based materials. Cem. Concr. Res. 40, 1052-1059 (2010). https://doi.org/10.1016/j.cemconres.2010.02.015

2. Jenq Y., Shah S.P. Two parameter fracture model for concrete. J. Eng. Mech. 111, 1227-1241 (1985).

3. Akkaya Y., Shah S.P., Ghandehari M. Influence of fiber dispersion on the performance of microfiber reinforced cement composites. In: ACI Special Publications 216: Innovations in Fiber-Reinforced Concrete for Value, SP-216-1, vol. 216, 1-18 (2003).

4. Makar J.M., Margeson J., Luh J. Carbon nanotube/cement composites - early results and potential applications. Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications. Canada, Vancouver, B. C., 1-10 (2005).

5. Li G.Y., Wang P.M., Zhao X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43 (6), 1239-1245 (2005). https://doi.org/10.1016/j.carbon.2004.12.017

6. Li G.Y., Wang P.M., Zhao X. Pressure-sensitive and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Comp. 29 (5), 377-382 (2007). https://doi.org/10.1016/j.cemconcomp.2006.12.011

7. Saez de Ibarra Y., Gaitero J.J., Erkizia E., Campillo I. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Physica Status Solidi (a) 203 (6), 1076-1081 (2006). https://doi.org/10.1002/pssa.200566166

8. Wansom S., Kidner N.J., Woo L.Y., Mason T.O. AC-impedance response of multiwalled carbon nanotube/cement composites. Cem. Concr. Comp. 28 (6), 509-519 (2006). https://doi.org/10.1016/j.cemconcomp.2006.01.014

9. Cwirzen A., Habermehl-Chirzen K., Penttala V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 20 (2), 65-73 (2008). https://doi.org/10.1680/adcr.2008.20.2.65

10. Xie X.L., Mai Y.W., Zhou X.P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. Rep. 49 (4), 89-112 (2005). https://doi.org/10.1016/j.mser.2005.04.002

11. Konsta-Gdoutos M.S., Metaxa Z.S., Shah S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 32 (2), 110-115 (2010). https://doi.org/10.1016/j.cemconcomp.2009.10.007

12. Metaxa Z.S., Konsta-Gdoutos M.S., Shah S.P. Carbon nanofiber cementitious composites: effect of debulking procedure on dispersion and reinforcing efficiency. Cem. Concr. Compos. 36, 25-32 (2013). https://doi.org/10.1016/j.cemconcomp.2012.10.009

13. Konsta-Gdoutos M.S., Aza Ch.A. Self-sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Compos. 53, 162-169 (2014). https://doi.org/10.1016/j.cemconcomp.2014.07.003

14. Hillerborg A. Analysis of fracture by means of the fictitious crack model, particularly for fiber reinforced concrete. Int. J. Cem. Comps. 2, 177-185 (1980).

15. Hillerborg A. The theoretical basis of method to determine the fracture energy Gf of concrete. Materials and Structures 18, 291-296 (1985). https://doi.org/10.1007/BF02472919

16. Carpinteri A., Ingraffea R. (eds). Fracture Mechanics of Concrete: Material Characterization and Testing. Hague, Boston, Lancaster, Martinus Nijhoff Publishers (1984).

17. Shah S.P. (ed.). Application of Fracture Mechanics to Cementitious Composites. Dordrecht, Boston, Lancaster, Martinus Nijhoff Publishers (1985).

18. Wittmann F.H. (ed.). Fracture Toughness and Fracture Energy of Concrete. Amsterdam, Elsevier (1986).

19. Elfgren L., Shah S.P. (eds). Analysis of Concrete Structures by Fracture Mechanics. London, New York, Tokyo, Melbourne, Madras, Chapman and Hall (1991).

20. Bazant Z.P. (ed.). Current Trends in Concrete Fracture Research. Dordrecht, Boston, London, Kluwer Academic Publishers (1991).

21. Shah S.P., Carpinteri (eds). Fracture Mechanics Test Methods for Concrete. London, New York, Tokyo, Melbourne, Madras, Chapman and Hall (1991).

22. Bazant Z.P. (ed.). Fracture Mechanics of Concrete Structures. London, New York, Elsevier Applied Science (1992).

23. Shah S.P., Swartz S.E., Ouyang C. Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials. Wiley (1995).

24. Cotterell B., Mai Y.W. Fracture Mechanics of Cementitious Materials. London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras, Blackie Academic & Professional (1996).

25. Bazant Z.P., Planas J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press (1998).

26. Vipulanandan C., Gerstle W.H. (eds). Fracture Mechanics for Concrete Materials: Testing and Applications. American Concrete Institute (2001).

27. Gdoutos E.E. Fracture Mechanics. 3rd ed. Springer (2020).

28. Reda T.M.M., Xiao X., Yi J., Shrive N.G. Evaluation of flexural fracture toughness for quasi-brittle structural materials using a simple test method. Can. J. Civ. Eng. 29, 567-575 (2002). https://doi.org/10.1139/l02-044

29. Karihaloo B.L., Nallathambi P. An improved effective crack model for the determination of fracture toughness in concrete. Cement and Concrete Research 19, 603-610 (1989). https://doi.org/10.1016/0008-8846(89)90012-4

30. Moukwa M., Lewis B.G., Shah S.P., Quyang C. Effects of clays on fracture properties of cement-based materials. Cement and Concrete Research 23, 711-723 (1993). https://doi.org/10.1016/0008-8846(93)90022-2

31. Das S.A.M., Dey V., Kachal R., Mobasher B., Sant G., Neithalath N. The fracture response of blended formulations containing limestone powder: Evaluations using twoparameter fracture model and digital image correlation. Cem. Concr. Comp. 53, 316-326 (2014). https://doi.org/10.1016/j.cemconcomp.2014.07.018

32. Sarker P.K., Haque R., Ramgolam K.V. Fracture behaviour of heat cured fly ash based geopolymer concrete. Mat. Design. 44, 580-586 (2013). https://doi.org/10.1016/j.matdes.2012.08.005

33. Nikbin I.M., Beygi M.H.A., Kazemi M.T., Amiri J.V., Rahmani E., Rabbanifar S., Eslami M. Effect of coarse aggregate volume on fracture behavior of self compacting concrete. Const. Build. Mat. 52, 137-145 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.041

34. Stynoski P., Mondal P., Marsh C. Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar. Cem. Concr. Comp. 55, 232-240 (2015). https://doi.org/10.1016/j.cemconcomp.2014.08.005

References

1. Konsta-Gdoutos M.S., Metaxa Z.S., Shah S.P. Highly dispersed carbon nanotubes reinforced cement based materials. Cem. Concr. Res. 40, 1052-1059 (2010). https://doi.org/10.1016/j.cemconres.2010.02.015

2. Jenq Y., Shah S.P. Two parameter fracture model for concrete. J. Eng. Mech. 111, 1227-1241 (1985).

3. Akkaya Y., Shah S.P., Ghandehari M. Influence of fiber dispersion on the performance of microfiber reinforced cement composites. In: ACI Special Publications 216: Innovations in Fiber-Reinforced Concrete for Value, SP-216-1, vol. 216, 1-18 (2003).

4. Makar J.M., Margeson J., Luh J. Carbon nanotube/cement composites - early results and potential applications. Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications. Canada, Vancouver, B. C., 1-10 (2005).

5. Li G.Y., Wang P.M., Zhao X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43 (6), 1239-1245 (2005). https://doi.org/10.1016/j.carbon.2004.12.017

6. Li G.Y., Wang P.M., Zhao X. Pressure-sensitive and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Comp. 29 (5), 377-382 (2007). https://doi.org/10.1016/j.cemconcomp.2006.12.011

7. Saez de Ibarra Y., Gaitero J.J., Erkizia E., Campillo I. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Physica Status Solidi (a) 203 (6), 1076-1081 (2006). https://doi.org/10.1002/pssa.200566166

8. Wansom S., Kidner N.J., Woo L.Y., Mason T.O. AC-impedance response of multiwalled carbon nanotube/cement composites. Cem. Concr. Comp. 28 (6), 509-519 (2006). https://doi.org/10.1016/j.cemconcomp.2006.01.014

9. Cwirzen A., Habermehl-Chirzen K., Penttala V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 20 (2), 65-73 (2008). https://doi.org/10.1680/adcr.2008.20.2.65

10. Xie X.L., Mai Y.W., Zhou X.P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. Rep. 49 (4), 89-112 (2005). https://doi.org/10.1016/j.mser.2005.04.002

11. Konsta-Gdoutos M.S., Metaxa Z.S., Shah S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 32 (2), 110-115 (2010). https://doi.org/10.1016/j.cemconcomp.2009.10.007

12. Metaxa Z.S., Konsta-Gdoutos M.S., Shah S.P. Carbon nanofiber cementitious composites: effect of debulking procedure on dispersion and reinforcing efficiency. Cem. Concr. Compos. 36, 25-32 (2013). https://doi.org/10.1016/j.cemconcomp.2012.10.009

13. Konsta-Gdoutos M.S., Aza Ch.A. Self-sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Compos. 53, 162-169 (2014). https://doi.org/10.1016/j.cemconcomp.2014.07.003

14. Hillerborg A. Analysis of fracture by means of the fictitious crack model, particularly for fiber reinforced concrete. Int. J. Cem. Comps. 2, 177-185 (1980).

15. Hillerborg A. The theoretical basis of method to determine the fracture energy Gf of concrete. Materials and Structures 18, 291-296 (1985). https://doi.org/10.1007/BF02472919

16. Carpinteri A., Ingraffea R. (eds). Fracture Mechanics of Concrete: Material Characterization and Testing. Hague, Boston, Lancaster, Martinus Nijhoff Publishers (1984).

17. Shah S.P. (ed.). Application of Fracture Mechanics to Cementitious Composites. Dordrecht, Boston, Lancaster, Martinus Nijhoff Publishers (1985).

18. Wittmann F.H. (ed.). Fracture Toughness and Fracture Energy of Concrete. Amsterdam, Elsevier (1986).

19. Elfgren L., Shah S.P. (eds). Analysis of Concrete Structures by Fracture Mechanics. London, New York, Tokyo, Melbourne, Madras, Chapman and Hall (1991).

20. Bazant Z.P. (ed.). Current Trends in Concrete Fracture Research. Dordrecht, Boston, London, Kluwer Academic Publishers (1991).

21. Shah S.P., Carpinteri (eds). Fracture Mechanics Test Methods for Concrete. London, New York, Tokyo, Melbourne, Madras, Chapman and Hall (1991).

22. Bazant Z.P. (ed.). Fracture Mechanics of Concrete Structures. London, New York, Elsevier Applied Science (1992).

23. Shah S.P., Swartz S.E., Ouyang C. Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials. Wiley (1995).

24. Cotterell B., Mai Y.W. Fracture Mechanics of Cementitious Materials. London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras, Blackie Academic & Professional (1996).

25. Bazant Z.P., Planas J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press (1998).

26. Vipulanandan C., Gerstle W.H. (eds). Fracture Mechanics for Concrete Materials: Testing and Applications. American Concrete Institute (2001).

27. Gdoutos E.E. Fracture Mechanics. 3rd ed. Springer (2020).

28. Reda T.M.M., Xiao X., Yi J., Shrive N.G. Evaluation of flexural fracture toughness for quasi-brittle structural materials using a simple test method. Can. J. Civ. Eng. 29, 567-575 (2002). https://doi.org/10.1139/l02-044

29. Karihaloo B.L., Nallathambi P. An improved effective crack model for the determination of fracture toughness in concrete. Cement and Concrete Research 19, 603-610 (1989). https://doi.org/10.1016/0008-8846(89)90012-4

30. Moukwa M., Lewis B.G., Shah S.P., Quyang C. Effects of clays on fracture properties of cement-based materials. Cement and Concrete Research 23, 711-723 (1993). https://doi.org/10.1016/0008-8846(93)90022-2

31. Das S.A.M., Dey V., Kachal R., Mobasher B., Sant G., Neithalath N. The fracture response of blended formulations containing limestone powder: Evaluations using twoparameter fracture model and digital image correlation. Cem. Concr. Comp. 53, 316-326 (2014). https://doi.org/10.1016/j.cemconcomp.2014.07.018

32. Sarker P.K., Haque R., Ramgolam K.V. Fracture behaviour of heat cured fly ash based geopolymer concrete. Mat. Design. 44, 580-586 (2013). https://doi.org/10.1016/j.matdes.2012.08.005

33. Nikbin I.M., Beygi M.H.A., Kazemi M.T., Amiri J.V., Rahmani E., Rabbanifar S., Eslami M. Effect of coarse aggregate volume on fracture behavior of self compacting concrete. Const. Build. Mat. 52, 137-145 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.041

34. Stynoski P., Mondal P., Marsh C. Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar. Cem. Concr. Comp. 55, 232-240 (2015). https://doi.org/10.1016/j.cemconcomp.2014.08.005

Published

2022-10-10

How to Cite

Gdoutos, E., & Konsta-Gdoutos, M. (2022). Fracture mechanics characterization of mortar nanocomposites reinforced with carbon nanotubes. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(3), 452–463. https://doi.org/10.21638/spbu01.2022.306

Issue

Section

On the anniversary of N.F. Morozov