Fourier transform method for partial differential equations: Formulas for representing solutions to the Cauchy problem

Authors

  • Vakha I. Gishlarkaev Chechen State University, 32, ul. Sharipova, Grozny, 364093, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.309

Abstract

The paper proposes a method for solving the Cauchy problem for linear partial differential equations with variable coefficients of a special form, allowing, after applying the (inverse) Fourier transform, to rewrite the original problem as a Cauchy problem for first-order partial differential equations. The resulting problem is solved by the method of characteristics and the (direct) Fourier transform is applied to its solution. And for this it is necessary to know the solution of the Cauchy problem for a first-order equation in the entire domain of definition. This leads to the requirement that the support of the (inverse) Fourier transform of the initial function of the original problem be compact, and to describe the class of initial functions, it is necessary to use Paley -Wiener - Schwarz-type theorems on Fourierimages, including distributions. The presentation of solutions in the form of the Fourier transform of some function (distribution), determined by the initial function, is presented. A general form of the evolutionary equation is written down, which, when the described method is applied, leads to the consideration of a homogeneous first-order equation, and a formula for the solution of the Cauchy problem in this general case is derived. The general form of the equation is written down, which leads to the consideration of a first-order inhomogeneous equation, and a formula for solutions it is derived. Particular cases of these equations are the well-known equations that are encountered in the description of various processes in physics, chemistry, and biology.

Keywords:

Fourier transform, distributions with compact support, method of characteris tics

Downloads

Download data is not yet available.
 

References

Литература

1. Гишларкаев В.И. Об одном способе представления решенийзадачи Коши для линейных уравненийв частных производных. Матем. сб. 209 (2), 82-101 (2018). https://doi.org/10.4213/sm8816

2. Горицкий А.Ю., Кружков С.Н., Чечкин Г.А. Уравнения с частными производными первого порядка. Москва, Изд-во МГУ (1999).

3. Тихонов А.Н., Васильева А.Б., Свешников А.Г. Дифференциальные уравнения. Москва, Наука (1980).

4. Полянин А.Д. Справочник по линейным уравнениям математической физики. Москва, Физматлит (2005).

5. Феллер В. Введение в теорию вероятностей и ее приложения, пер. с англ. Т. 2. Москва, Мир (1967).

6. Хёрмандер Л. Анализ линейных дифференциальных операторов с частными производными, пер. с англ. Т. 1. Москва, Мир (1988).

References

1. Gishlarkaev V.I. A method for representing solutions of the Cauchy problem for linear partial differential equations. Mat. Sb. 209 (2), 82-101 (2018). https://doi.org/10.4213/sm8816 (In Russian) [Eng. transl.: Sbornik: Mathematics 209 (2), 222-240 (2018). https://doi.org/10.1070/SM8816].

2. Goritsky A.Yu., Kruzhkov S.N., Chechkin G.A. First-order partial differential equations. Moscow, Moscow University Press (1999). (In Russian)

3. Tikhonov A.N., Vasileva A.B., Sveshnikov A.G. Differential equations. Moscow, Nauka Publ. (1980). (In Russian)

4. Polyanin A.D. Handbook of linear equations of mathematical physics. Moscow, Fizmatlit Publ. (2001). (In Russian)

5. Feller W. An introduction to probability theory and its applications. Vol. 2. New York, London, Sydney, John Wiley & Sons (1966). [Rus. ed.: Feller W. Vvedenie v teoriju verojatnostej i ee prilozhenija. Vol. 2. Moscow, Mir Publ. (1967)].

6. Hormander L. The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. In Ser.: Grundlehren der mathematischen Wissenschaften, vol. 256. Berlin, SpringerVerlag (1983). [Rus. ed.: Hormander L. Analiz linejnyh differencial’nyh operatorov s chastnymi proizvodnymi. Vol. 1. Moscow, Mir Publ. (1988)].

Published

2022-10-10

How to Cite

Gishlarkaev, V. I. (2022). Fourier transform method for partial differential equations: Formulas for representing solutions to the Cauchy problem. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(3), 480–494. https://doi.org/10.21638/spbu01.2022.309

Issue

Section

Mathematics