Differential resonant MEMS accelerometer: Synchronization characteristics of weakly coupled microbeam sensing elements
DOI:
https://doi.org/10.21638/spbu01.2023.210Abstract
This work is devoted to studying the conditions and scenarios for synchronizing oscillations of weakly coupled microbeam elements of a differential resonant MEMS accelerometer operating in the dual-loop self-oscillator mode. The model of a system of two Van der Pol self-oscillators with a nonlinear elastic coupling between moving elements, obtained using the Galerkin method, was studied using the multiscale method. The modes of beats and synchronization of oscillations of two resonators are found analytically and numerically, and the boundary between these modes in the space of system parameters is determined. Along with a local bifurcation analysis of the considered stationary regimes, a global analysis of the evolution and branching of limit cycles in the space of slow variables was also carried out, which made it possible to detect zones of coexistence of stable synchronization and beat regimes with their basins of attraction. The influence of the factor of the designed or technologically determined non-identity of the design of two resonators on the location of the parametric zones of synchronization and beats is studied.Keywords:
resonant accelerometer, weakly coupled systems, synchronizing oscillations, Van der Pol oscillator
Downloads
References
Литература
References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.