Rayleigh waves in an electroelastic medium with prestressed inhomogeneous coating

Authors

  • Tat’yana I. Belyankova Southern Scientific Center of the Russian Academy of Sciences, 41, pr. Chekhova, Rostov-on-Don, 344006, Russian Federation
  • Valeriy V. Kalinchuk Southern Scientific Center of the Russian Academy of Sciences, 41, pr. Chekhova, Rostov-on-Don, 344006, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2023.402

Abstract

An approach to studying the influence of initial mechanical stresses and an electrostatic field on the structure and behavior of Rayleigh waves in piezoelectric media with non-homogeneous coatings is proposed. The paper considers two-component coatings made of functionally graded piezoelectric material with high-speed or low-speed inclusions. The initially deformed state of the coating is induced by the separate or combined action of initial mechanical stresses and an external electrostatic field. The influence of the type of non-homogeneity and the nature of initial mechanical stresses in the presence or absence of an initial electrostatic field on the features of Rayleigh wave propagation for problems with an electrically open or shorted surface is studied. It is established that the presence of a low-intensity initial electrostatic field only slightly affects the action of initial mechanical stresses depending on its direction. The presence of a high-intensity electrostatic field leads to additional deformation of the material, significant changes in the speeds of PAV modes, and substantial changes in the structure of the surface wave field. The obtained results are presented in dimensionless parameters and may be of practical interest in the development, design, and optimization of new materials for micro- and nanoscale devices and devices on Rayleigh surface acoustic waves with high performance characteristics.

Keywords:

piezoelectric structure, substrate, heterogeneous coating, functionally graded piezoelectric material, initial stresses, initial deformed state, external electrostatic field, surface acoustic waves, Rayleigh waves

Downloads

Download data is not yet available.
 

References

Литература

1. Mason W. P. Physical acoustics and the properties of solids. Princeton, N. J., Van Nostrand (1958).

2. Викторов И.А. Физические основы применения ультразвуковых волн Рэлея и Лэмба в технике. Москва, Наука (1966).

3. Dieulesaint E., Royer D. Ondes Elastiques Dans Les Solides. Application au traitement du signal. Paris, Ed. Masson (1974).

4. Matthews H. (ed.) Surface Wave Filters. Design, Construction and Use. New York, John Wiley & Sons (1977).

5. Achenbach J.D. Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973).

6. Auld B. A. Acoustic Fields and Waves in Solids. vol. 2. Krieger, Malabar, FL (1990).

7. Biryukov S.V., Gulyaev Y.V., Krylov V.V., Plessky V.P. Surface Acoustic Waves in Inhomogeneous Media. New York, Springer-Verlag (1995).

8. Shuvalov A. L., Every A. G. Some properties of surface acoustic waves in anisotropic-coated solids, studied by the impedance method. Wave Motion 36 (3), 257-273 (2002). https://doi.org/10.1016/S0165-2125(02)00013-6

9. Гольдштейн Р.В., Кузнецов С. В. Поверхностные акустические волны в диагностике слоистых сред. Чувствительность волн к вариации свойств отдельных слоев. ПММ 77 (1), 74-82 (2013).

10. Белянкова Т.И., Калинчук В.В. К проблеме анализа динамических свойств слоистого полупространства. Акустический журнал 60 (5), 492-504 (2014).

11. Alshits V. I., Maugin G.A. Dynamics of multilayers: elastic waves in an anisotropic graded or stratified plate. Wave Motion 41 (4), 357-394 (2005). https://doi.org/10.1016/j.wavemoti.2004.09.002

12. Destrade M. Seismic Rayleigh waves on an exponentially graded, orthotropic halfspace. Proceedings: Mathematical, Physical and Engineering Sciences 463 (2078), 495-502 (2007). http://www.jstor.org/stable/20209130

13. Калинчук В.В., Белянкова Т.И. Динамические контактные задачи для предварительно напряженных тел. Москва, Физматлит (2002).

14. Auld B.A. Wave propagation and resonance in piezoelectric materials. J. Acoust. Soc. Am. 70 (6), 1577-1585 (1981). https://doi.org/10.1121/1.387223

15. Zinchuk L.P., Podlipenets A.N. Dispersion equations for Rayleigh waves in a piezoelectric periodically layered structure. Journal of Mathematical Sciences 103 (3), 398-403 (2001). https://doi.org/10.1023/A:1011382816558

16. Othmani C., Labiadh L., Lu C., Kamali A. R., Takali F. Influence of a piezoelectric ZnO intermediate layer on Rayleigh waves propagating in Sc 43% AlN 57% /ZnO/diamond hetero-structures subjected to uniaxial stress. Eur. Phys. J. Plus 135, 898 (2020). https://doi.org/10.1140/epjp/s13360-020-00912-9

17. Желнорович В.А. Поверхностные волны Релея и Блюстейна-Гуляева в упругих пьезоэлектриках при наличии релаксации диэлектрическойполяризации. ПММ 79 (2), 273-285 (2015).

18. Favretto-Cristini N., Komatitsch D., Carcione J.M., Cavallini F. Elastic surface waves in crystals. Part 1: Review of the physics. Ultrasonics 51 (6), 653-660 (2011). https://doi.org/10.1016/j.ultras.2011.02.007

19. Wang W., Liang J., Ruan Y., Pang W., You Z. Design and fabrication of an surface acoustic wave resonator based on AlN/4H-SiC material for harsh environments. Journal of Zhejiang University-SCIENCE A. 18 (1), 67-74 (2017). https://doi.org/10.1631/jzus.a1600028

20. Tiersten H.F. Elecrtoelastic interactions and the piezoelectric equations. J. Acoust. Soc. Am. 70, 1567-1576 (1981).

21. Калинчук В.В., Белянкова Т.И. Динамические контактные задачи для предварительно напряженных электроупругих тел. Москва, Физматлит (2006).

22. Евдокимова О. В., Белянкова Т.И., Калинчук В.В. Уравнения динамики преднапряженной пьезоактивной среды при наличии внешнего электростатического поля. Вестник Южного научного центра РАН 3 (4), 19-25 (2007).

23. Белянкова Т.И., Калинчук В.В., Шейдаков Д.Н. Уравнения динамики преднапряженной электротермоупругойсреды . Вестник Южного научного центра РАН 7 (2), 5-14 (2011).

24. Burkov S. I., Zolotova O.P., Sorokin B. P. Influence of bias electric field on elastic waves propagation in piezoelectric layered structures. Ultrasonics 53 (6), 1059-1064 (2013).

25. Cao X., Jin F.,Wang Z. On dispersion relations of Rayleigh waves in a functionally graded piezoelectric material (FGPM) half-space. Acta Mech. 200, 247-261 (2008). https://doi.org/10.1007/s00707-008-0002-1

26. Ben Salah I., Njeh A., Ben Ghozlen M.H. A theoretical study of the propagation of Rayleigh waves in a functionally graded piezoelectric material (FGPM). Ultrasonics 52 (2), 306-314 (2012). https://doi.org/10.1016/j.ultras.2011.08.016

27. Hemalatha K., Kumar S., Prakash D. Dispersion of Rayleigh wave in a functionally graded piezoelectric layer over elastic substrate. Forces in Mechanics (10), 100171 (2023). https://doi.org/10.1016/j.finmec.2023.100171

28. Ezzin H., Mkaoir M., Amor M.B. Rayleigh wave behavior in functionally graded magnetoelectro-elastic material. Superlattices and Microstructures 112, 455-469 (2017). https://doi.org/10.1016/j.spmi.2017.10.001

29. Belyankova T. I., Vorovich E. I., Kalinchuk V. V., Tukodova O.M. Features of Rayleigh Waves Propagation in Structures with FGPM Coating Made of Various Materials. Springer Proceedings in Materials. Physics and Mechanics of New Materials and Their Applications 10, 245-259 (2021). https://doi.org/10.1007/978-3-030-76481-4_22

30. Belyankova T. I., Kalinchuk V.V. On the dynamics of an inhomogeneous prestressed electroelastic medium under the influence of an external electric field. Mechanics of Solids 56 (7), 242-250 (2021). https://doi.org/10.3103/S0025654421070098

References

1. Mason W. P. Physical acoustics and the properties of solids. Princeton, N. J., Van Nostrand (1958).

2. Viktorov I. A. Rayleigh and Lamb Waves: Physical Theory and Applications. New York, Plenum Press (1967). [Rus. ed.: Viktorov I.A. Fizicheskie osnovy primeneniya ul’trazvukovyh voln Releya i Lemba v tekhnike. Moscow, Nauka Publ. (1966)].

3. Dieulesaint E., Royer D. Ondes Elastiques Dans Les Solides. Application au traitement du signal. Paris, Ed. Masson (1974).

4. Matthews H. (ed.) Surface Wave Filters. Design, Construction and Use. New York, John Wiley & Sons (1977).

5. Achenbach J.D. Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973).

6. Auld B. A. Acoustic Fields and Waves in Solids., vol. 2. Krieger, Malabar, FL (1990).

7. Biryukov S.V., Gulyaev Y.V., Krylov V.V., Plessky V.P. Surface Acoustic Waves in Inhomogeneous Media. New York, Springer-Verlag (1995).

8. Shuvalov A. L., Every A. G. Some properties of surface acoustic waves in anisotropic-coated solids, studied by the impedance method. Wave Motion 36 (3), 257-273 (2002). https://doi.org/10.1016/S0165-2125(02)00013-6

9. Goldstein R.V., Kuznetsov S.V. Surface acoustic waves in the testing of layered media. The waves’ sensitivity to variations in the properties of the individual layers. J. Appl. Math. Mech. 77 (1), 74-82 (2013). (In Russian) [Eng. transl.: J. Appl. Math. Mech. 77 (1), 51-56 (2013) https://doi.org/10.1016/j.jappmathmech.2013.04.007].

10. Belyankova T. I., Kalinchuk V.V. On the problem of analyzing the dynamic properties of a layered half-space. Acoust. Phys. 60, 492-504 (2014). (In Russian) [Eng. transl.: Acoust. Phys. 60, 530-542 (2014). https://doi.org/10.1134/S1063771014050017].

11. Alshits V. I., Maugin G.A. Dynamics of multilayers: elastic waves in an anisotropic graded or stratified plate. Wave Motion 41 (4), 357-394 (2005). https://doi.org/10.1016/j.wavemoti.2004.09.002

12. Destrade M. Seismic Rayleigh waves on an exponentially graded, orthotropic halfspace. Proceedings: Mathematical, Physical and Engineering Sciences 463 (2078), 495-502 (2007). http://www.jstor.org/stable/20209130

13. Kalinchuk V. V., Belyankova T. I. Dynamic Contact Problems for Preliminary Stressed Solids. Moscow, Fizmatlit Publ. (2002). (In Russian)

14. Auld B.A. Wave propagation and resonance in piezoelectric materials. J. Acoust. Soc. Am. 70 (6), 1577-1585 (1981). https://doi.org/10.1121/1.387223

15. Zinchuk L.P., Podlipenets A.N. Dispersion equations for Rayleigh waves in a piezoelectric periodically layered structure. Journal of Mathematical Sciences 103 (3), 398-403 (2001). https://doi.org/10.1023/A:1011382816558

16. Othmani C., Labiadh L., Lu C., Kamali A. R., Takali F. Influence of a piezoelectric ZnO intermediate layer on Rayleigh waves propagating in Sc 43% AlN 57% /ZnO/diamond hetero-structures subjected to uniaxial stress. Eur. Phys. J. Plus 135, 898 (2020). https://doi.org/10.1140/epjp/s13360-020-00912-9

17. Zhelnorovich V.A. Rayleigh and Bleustein-Gulyayev surface waves in elastic piezoelectric materials with relaxation of dielectric polarization. J. Appl. Math. Mech. 79 (2), 273-285 (2015). (In Russian) [Eng. transl.: J. Appl. Math. Mech. 79 (2), 186-194. https://doi.org/10.1016/j.jappmathmech.2015.07.010].

18. Favretto-Cristini N., Komatitsch D., Carcione J.M., Cavallini F. Elastic surface waves in crystals. Part 1: Review of the physics. Ultrasonics 51 (6), 653-660 (2011). https://doi.org/10.1016/j.ultras.2011.02.007

19. Wang W., Liang J., Ruan Y., Pang W., You Z. Design and fabrication of an surface acoustic wave resonator based on AlN/4H-SiC material for harsh environments. Journal of Zhejiang University-SCIENCE A. 18 (1), 67-74 (2017). https://doi.org/10.1631/jzus.a1600028

20. Tiersten H.F. Elecrtoelastic interactions and the piezoelectric equations. J. Acoust. Soc. Am. 70, 1567-1576 (1981).

21. Kalinchuk V. V., Belyankova T. I. Dynamic Contact Problems for Prestressed Electroelastic Media. Moscow, Fizmatlit Publ. (2006). (In Russian)

22. Evdokimova O.V., Belyankova T. I., Kalinchuk V.V. Equations of Dynamics of Prestressed Piezoactive Medium in the Presence of External Electrostatic Field. Vestnik Yuzhn. Nauchn. Tsentra RAN 3 (4), 19-25 (2007). (In Russian)

23. Belyankova T. I., Kalinchuk V.V., Sheidakov D.N. Dynamics equations for prestressed electrothermoelastic medium. Vestnik Yuzhn. Nauchn. Tsentra RAN 7 (2), 5-14 (2011). (In Russian)

24. Burkov S. I., Zolotova O.P., Sorokin B. P. Influence of bias electric field on elastic waves propagation in piezoelectric layered structures. Ultrasonics 53 (6), 1059-1064 (2013).

25. Cao X., Jin F.,Wang Z. On dispersion relations of Rayleigh waves in a functionally graded piezoelectric material (FGPM) half-space. Acta Mech. 200, 247-261 (2008). https://doi.org/10.1007/s00707-008-0002-1

26. Ben Salah I., Njeh A., Ben Ghozlen M.H. A theoretical study of the propagation of Rayleigh waves in a functionally graded piezoelectric material (FGPM). Ultrasonics 52 (2), 306-314 (2012). https://doi.org/10.1016/j.ultras.2011.08.016

27. Hemalatha K., Kumar S., Prakash D. Dispersion of Rayleigh wave in a functionally graded piezoelectric layer over elastic substrate. Forces in Mechanics 10, 100171 (2023). https://doi.org/10.1016/j.finmec.2023.100171

28. Ezzin H., Mkaoir M., Amor M.B. Rayleigh wave behavior in functionally graded magnetoelectro-elastic material. Superlattices and Microstructures 112, 455-469 (2017). https://doi.org/10.1016/j.spmi.2017.10.001

29. Belyankova T. I., Vorovich E. I., Kalinchuk V. V., Tukodova O.M. Features of Rayleigh Waves Propagation in Structures with FGPM Coating Made of Various Materials. Springer Proceedings in Materials. Physics and Mechanics of New Materials and Their Applications 10, 245-259 (2021). https://doi.org/10.1007/978-3-030-76481-422

30. Belyankova T. I., Kalinchuk V.V. On the dynamics of an inhomogeneous prestressed electroelastic medium under the influence of an external electric field. Mechanics of Solids 56 (7), 242-250 (2021). https://doi.org/10.3103/S0025654421070098

Published

2023-12-23

How to Cite

Belyankova, T. I., & Kalinchuk, V. V. (2023). Rayleigh waves in an electroelastic medium with prestressed inhomogeneous coating. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 10(4), 600–615. https://doi.org/10.21638/spbu01.2023.402

Issue

Section

On the anniversary of A. K. Belyaev