Kindred diagrams

Authors

  • Vladimir M. Nezhinskij St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation; The Herzen State Pedagogical University of Russia, 48, nab. r. Moiki, St. Petersburg, 191186, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2023.408

Abstract

By a diagram we mean a topological space obtained by gluing to a standard circle a finite number of pairwise non-intersecting closed rectangles along their lateral sides, the glued rectangles are pairwise disjoint. Diagrams are not new objects; they were used in many areas of low-dimensional topology. Our main goal is to develop the theory of diagrams to a level sufficient for application in one more branch - in the theory of tangles. We provide the diagrams with simple additional structures - the smoothness of the circles and rectangles that are pairwise consistent with each other, the orientation of the circle, a point on the circle; we introduce new equivalence relation (that is as far as the author knows not previously encountered in the scientific literature) - kindred relation; we define a surjective mapping of the set of classes of kindred diagrams onto the set of classes of diffeomorphic smooth compact connected two-dimensional manifolds with boundary and note that in the simplest cases this surjection is also a bijection. The application of the constructed theory to the tangle theory requires additional preparation and therefore is not included in this article; the author intends to devote a separate publication to this application.

Keywords:

diagram, transformer, disk-band graph

Downloads

Download data is not yet available.
 

References

Литература

1. Ландо С. К. J-инварианты орнаментов и оснащенные хордовые диаграммы. Функциональный анализ и его приложение 40 (1), 1-13 (2006).

2. Масси У., Столлингс Дж. Алгебраическая топология. Введение, пер. с англ. Москва, Мир (1977).

3. Нежинский В. М. Пространственные графы, тенглы и плоские деревья. Алгебра и анализ 31 (6), 197-207 (2019).

4. Нежинский В. М. Изотопические инварианты пространственных графов. Сиб. Электрон. матем. изв. 17, 769-776 (2020).

5. Nezhinskij V. M. Spatial graphs and their isotopy classi cation. Сиб. электрон. матем. изв. 18 (2), 1390-1396 (2021).

6. Прасолов В. В., Сосинский А. В. Узлы, зацепления, косы и трехмерные многообразия. Москва, МЦНМО (1997).

References

1. Lando S.K. J-Invariants of Plane Curves and Framed Chord Diagrams. Funktsional’nyi analiz i ego prilozhenie 40 (1), 1-10 (2006). (In Russian) [Eng. transl.: Funct. Anal. Appl. 40 (1), 1-10 (2006).

2. Massey W. S., Stollings J. S. Algebraic Topology: An Introduction (1971). [Rus. ed.: Massey W. S., Stollings J. S. Algebraicheskaja topologija. Vvedenie. Moscow, Mir Publ. (1977)].

3. Nezhinskij V.M. Spatial graphs, tangles and plane trees. Algebra i analiz 31 (6), 197-207 (2019) (In Russian) [Eng. transl.: St. Petersburg Math. 31 (6), (2020), 1055-1063].

4. Nezhinskij V.M. Isotopy invariants of spatial graphs. Elektronnye matematicheskie izvestiia 17, 769-776 (2020). (In Russian)

5. Nezhinskij V.M. Spatial graphs and their isotopy classification. Elektronnye matematicheskie izvestiia 18 (2), 1390-1396 (2021).

6. Prasolov V. V., Sosinskii A. V. Knots, links, braids and 3-manifolds. Moscow, MCNMO Publ. (1997). (In Russian)

Published

2023-12-23

How to Cite

Nezhinskij, V. M. (2023). Kindred diagrams. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 10(4), 713–719. https://doi.org/10.21638/spbu01.2023.408

Issue

Section

Mathematics