Terminal movement of the thin elliptical plate on the horizontal plane with orthotropic friction

Authors

  • Nikita N. Dmitriev St. Petersburg State University, Universitetskaya nab., 7-9, St. Petersburg, 199034, Russian Federation;
  • Olga A. Silantyeva St. Petersburg State University, Universitetskaya nab., 7-9, St. Petersburg, 199034, Russian Federation;

DOI:

https://doi.org/10.21638/11701/spbu01.2016.118

Abstract

In a number of engineering problems friction forces can vary significantly depending on the direction of sliding. This research deals with orthotropic friction. The presented model describes final motion of the thin elliptical plate on the horizontal plane. The system of differential equations, which describe dynamical behavior of the plate, is solved numerically for different initial conditions. Final movement of the plate depends from interrellations between the moment of inertia, friction coefficients and plate orientation. The comparison of the motion of elliptical and circle plates is presented. It is shown that sliding and spinning end simultaneously for both types of plates. The results may be used for more accurate simulations of railway contact. Refs 14. Figs 3. Tables 2.

Downloads

Download data is not yet available.
 

References

Литература

1. Ohe C.B. von der, Johnsen R., Espal largas N. Multi-degradation behavior of austenitic and super duplex stainless steel - The effect of 4-point static and cyclic bending applied to a simulated seawater tribocorrosion system // Wear. Vol. 288. 2012. P. 39-53.

2. Konyukhov A., Vielsack P., Schweizerhof K. On coupled models of anisotropic contact surfaces and their experimental validation // Wear. Vol. 264. 2008. P. 579-588.

3. Дмитриев Н.Н. Движение диска и кольца по плоскости с анизотропным трением // Трение и износ. Т. 23, №1. 2002. С. 10-15.

4. Zmitrowicz A. Models of kinematic dependent anisotropic and heterogeneous friction // J. of Solids and Structures. Vol. 43, №14. 2006. P. 4407-4451.

5. Вайдман П.Д., Мальотра Ч. О финальном движении скользящих и вращающихся дисков с однородным кулоновым трением // Нелинейная динамика. Т. 7, №2. 2011. С. 339-365.

6. Дмитриев Н.Н. Скольжение твёрдого тела, опирающегося на круговую площадку, по горизонтальной плоскости с ортотропным трением. Часть 1. Равномерное распределение нагрузки // Трение и износ. Т. 30, №4. 2009. С. 227-236.

7. Piotrowski J., Chol let H. Wheel-rail contact models for vehicle system dynamics including multi-point contact // Vehicle Syst. Dyn. Vol. 43, N 6-7. 2005. P. 455-483.

8. Ишлинскиий А.Ю., Соколов Б.Н., Черноусько Ф.Л. О движении плоских тел при наличии сухого трения // Изв. АН СССР. МТТ. 1981, №4. С. 17-28.

9. Розенблат Г.М. Динамические системы с сухим трением. М.; Ижевск: НИЦ «Регулярная и хаотическая динамика», 2006. 204 с.

10. Voyenli K., Eriksen E. On the motion of an ice hockey puck // Amer. J. Phys. 1985. Vol. 53. P. 1149-1153.

11. Zmitrowicz A. Mathematical descriptions of anisotropic friction // International Journal of Solids and Structures. Vol. 25, N 8. 1989. P. 837-862.

12. Farkas Z., Bartels G., Unger T., Wolf D. E. Frictional coupling between sliding and spinning motion // Phys. Rev. Lett. Vol. 90. Issue 24. 2003. P. 248-302.

13. Dmitriev N.N., Silantyeva O.A. About the movement of a solid body on a plane surface in accordance with elliptic contact area and anisotropic friction force // Proc. of jointly organised WCCM XI, ECCM V, ECFD VI, Spain, CIMNE. Vol. IV. 2014. P. 4440-4452.

14. Лурье А.И. Аналитическая механика. М.: Гос. изд. физ.-мат. лит. 1961.

References

1. Ohe C.B. von der, Johnsen R., Espallargas N., “Multi-degradation behavior of austenitic and super duplex stainless steel — The effect of 4-point static and cyclic bending applied to a simulated seawater tribocorrosion system”, Wear 288, 39–53 (2012).

2. Konyukhov A., Vielsack P., Schweizerhof K., “On coupled models of anisotropic contact surfaces and their experimental validation”, Wear 264, 579–588 (2008).

3. Dmitriev N. N., “Movement of the disk and the ring over the plane with anisotropic friction”, J. Fric. Wear 23 (1), 10–15 (2002) [in Russian].

4. Zmitrowicz A. “Models of kinematic dependent anisotropic and heterogeneous friction”, J. of Solids and Structures 43(14), 4407–4451 (2006).

5. Weidman P.D., Malhotra Ch.P., “On the Terminal Motion of Sliding Spinning Disks with Uniform Coulomb Friction”, Phys. D. 233(1), 1–13 (2007).

6. Dmitriev N. N., “Sliding of a solid body supported by a round platform on a horizontal plane with orthotropic friction. Part 1. Regular load distribution”, J. Fric. Wear 30(4), 227–236 (2009) [in Russian].

7. Piotrowski J., Chollet H., “Wheel-rail contact models for vehicle system dynamics including multipoint contact”, Vehicle Syst. Dyn. 43(6–7), 455–483 (2005).

8. Ishlinskii A.Yu., Sokolov B.N., Chernous’ko F. L., “On the motion of plane bodies in the presence of dry friction”, Izv. AN SSSR. MTT (Mechanics of Solids) (4), 17–28 (1981) [in Russian].

9. Rozenblat G.M., “Dynamical Systems with Dry Friction”, NITs Regular and Chaotic Dynamics (Moscow, Izhevsk, 2006, 204 p.) [in Russian].

10. Voyenli K., Eriksen E., “On the motion of an ice hockey puck”, Amer. J. Phys. 53, 1149–1153 (1985).

11. Zmitrowicz A., “Mathematical descriptions of anisotropic friction”, International Journal of Solids and Structures 25(8), 837–862 (1989).

12. Farkas Z., Bartels G., Unger T., Wolf D.E., “Frictional coupling between sliding and spinning motion”, Phys. Rev. Lett. 90, Issue 24, 248–302 (2003).

13. Dmitriev N.N., Silantyeva O. A., “About the movement of a solid body on a plane surface in accordance with elliptic contact area and anisotropic friction force”, Proc. of jointly organised WCCM XI, ECCM V, ECFD VI, Spain, CIMNE IV, 4440–4452 (2014).

14. Lurye A. I., Analytical Mechanic (Fizmatlit, Moscow, 1961) [in Russian].

Published

2020-10-19

How to Cite

Dmitriev, N. N., & Silantyeva, O. A. (2020). Terminal movement of the thin elliptical plate on the horizontal plane with orthotropic friction. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 3(1), 1. https://doi.org/10.21638/11701/spbu01.2016.118

Issue

Section

Mechanics