Discretization of the parking problem
DOI:
https://doi.org/10.21638/spbu01.2020.408Abstract
The present work consider a natural discretization of R´enyi’s so-called “parking problem”. Let l, n, i be integers satisfying l ≥ 2, n ≥ 0 and 0 ≤ i ≤ n − l. We place an open interval (i, i + l) in the segment [0, n] with i being a random variable taking values 0, 1, 2, . . . , n − l with equal probability for all n ≥ l. If n < l we say that the interval does not fit. After placing the first interval two free segments [0, i] and [i + l, n] are formed and independently filled with the intervals of length l according to the same rule, etc. At the end of the filling process the distance between any two adjacent unit intervals is at most l−1. Let ξn,l denote the cumulative length of the intervals placed. The asymptotics behavior of expectations of the aforementioned random sequence have already been studied. This contribution has an aim to continue this investigation and establish the behavior of variances of the same sequence.Keywords:
random filling, discrete “parking” problem, asymptotic behavior of moments
Downloads
References
Литература
References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.