Power-law generalization of Newton’s formula for shear stress in a liquid in the form of a tensor rheological relation

Authors

  • Valerii А. Pavlovsky St Petersburg State Marine Technical University, 3, Lotsmanskaya ul., St Petersburg, 190121, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.213

Abstract

A generalization of Newton’s formula for the shear stress in a fluid is carried out by giving it a power-law form and the corresponding rheological relation is written in tensor form. Depending on the exponent in this rheological ratio, one can come to a description of either a laminar or turbulent flow regime. In the latter case, there is a system of differential equations with the no-slip boundary condition. The proposed system of equations for turbulent fluid motion can be useful, at least, for obtaining preliminary, estimated characteristics of turbulent flow before starting numerical modeling using modern differential turbulence models. For some values of the exponent, this system can be used to describe the behavior of power-law fluids, as well as fluids with small additives of polymers in the manifestation of the Toms effect.

Keywords:

power formulas, generalization of Newton’s formula, Blasius formula, stress tensor, differential equations of turbulent flow, analytical solutions

Downloads

Download data is not yet available.
 

References

Литература

1. Артюшков Л. С. Динамика неньютоновских жидкостей. Санкт-Петербург, Изд. центр СПбГМТУ (1997).

2. Эртель Г. (мл.) Путеводитель Прандтля по гидроаэродинамике. Москва, Ижевск, Регулярная и хаотическая динамика (2007).

3. Лойцянский Л. Г. Механика жидкости и газа. Москва, Наука (1987).

4. Баренблатт Г.И., Корин А.Дж., Простокишин В.М. Турбулентные течения при очень больших числах Рейнольдса: уроки новых исследований. УФН 184, 265–272 (2014).

5. Вигдорович И.И. Описывает ли степенная формула турбулентных профилей скорости в трубе? УФН 185, 213–216 (2015).

6. Джайчибеков Н.Ж., Матвеев С.К., Сидоров Д. Г. Расчет стратифицированного двухфазного течения в трубе. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 4 (62), вып. 1, 131–135 (2017). https://doi.org/10.21638/11701/spbu01.2017.115

7. Павловский В.А., Никущенко Д.В. Вычислительная гидродинамика. Теоретические основы. Санкт-Петербург, Лань (2018).

References

1. Artyushkov L. S. Dynamics of non-Newtonian fluids. St Petersburg, SMTU Publ. Center (1997). (In Russian)

2. Ertel G. Jr. Prandl’s guide to hydroaerodynamics. Moscow, Izhevsk, Regular and chaotic dynamics Publ. (2007). (In Russian)

3. Loytsyansky L.G. Mechanics of liquid and gas. Moscow, Nauka Publ. (1987).

4. Barenblatt G. I., Korin A. J., Prostokishin V.M. Turbulent flows at very large Reynolds numbers: lessons from new research. Uspekhi Fizicheskikh Nauk 184, 265–272 (2014). (In Russian) [Eng. transl.: Phys. Usp. 57 (3), 250–256 (2014)].

5. Vigdorovich I. I. Does the power-law describe turbulent velocity profiles in a pipe? Uspekhi Fizicheskikh Nauk 185, 213–216 (2015). (In Russian) [Eng. transl.: Phys. Usp. 58 (2), 196–198 (2015)].

6. Dzhaichibekov N. Zh., Matveev S.K., Sidorov D. G. Calculation of a stratified two-phase flow in a pipe. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 4 (62), iss. 1, 131–135 (2017). https://doi.org/10.21638/11701/spbu01.2017.115 (In Russian)

7. Pavlovsky V.A., Nikushchenko D.V. Computational Fluid Dynamics. Theoretical basis. StPetersburg, Lan’ Publ. (2018). (In Russian)

Published

2022-07-06

How to Cite

Pavlovsky V. А. (2022). Power-law generalization of Newton’s formula for shear stress in a liquid in the form of a tensor rheological relation. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(2), 338–345. https://doi.org/10.21638/spbu01.2022.213

Issue

Section

Mechanics