Об устойчивости нулевого решения дифференциального уравнения второго порядка в критическом случае
DOI:
https://doi.org/10.21638/spbu01.2021.402Аннотация
Рассматривается дифференциальное уравнение вида x¨ + x2sgnx = Y (t, x, x˙), правая часть которого есть малое периодическое по t возмущение, достаточно гладкая функция в окрестности начала координат по переменным x, x˙. Будем предполагать, что возмущение X имеет порядок малости не ниже пятого, если x приписывать второй порядок, x˙-третий. Вводятся периодические функции, являющиеся решением уравнения, указанного выше с нулевой правой частью. Так как гладкость квадратичной части ограничена, то гладкость введенных функций также ограничена. С помощью этих функций осуществляется переход от первоначального уравнения к системе в координатах, аналогичных полярным. Данная система с помощью полиномиальной замены приводится к системе с константами Ляпунова. Коэффициенты замены находятся методом неопределенных коэффициентов. По знаку первой ненулевой константы делается вывод о характере устойчивости нулевого решения. Из-за ограниченной гладкости введенных функций степень полиномиальной замены должна быть ограничена. Система дифференциальных уравнений для нахождения коэффициентов замены решается рекуррентно. Для разрешения проблем, возникающих из-за ограниченной гладкости, используется метод выделения главной части введенных функций и их комбинаций в результате разложении последних в ряды Фурье. Остаток ряда предполагается достаточно малым, и показывается, что его наличием можно пренебречь. Переход к главным частям вместо функций позволяет скомпенсировать недостаток гладкости введенных функций. При рассмотрении таких систем можно снова использовать полиномиальную замену и найти константу Ляпунова для каждой главной части. Показано, что знак константы для любой главной части будет сохраняться. Указываются достаточные условия устойчивости и неустойчивости.Ключевые слова:
устойчивость, малые периодические возмущения, осциллятор, константа Ляпунова, периодические функции
Скачивания
Библиографические ссылки
Литература
References
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.