Оценка сложности аппроксимации в среднем для тензорных степеней случайных процессов
DOI:
https://doi.org/10.21638/spbu01.2021.403Аннотация
Рассматриваются случайные поля, являющиеся тензорными степенями некоторого случайного процесса второго порядка с непрерывной ковариационной функцией. Сложность аппроксимации в среднем для заданного случайного поля определяется как минимальное количество значений линейных функционалов, необходимых для его приближения с относительной средней квадратической ошибкой, не превышающей заданного порога. В настоящей работе оценивается рост сложности аппроксимации в среднем случайного поля при сколь угодно высокой его параметрической размерности и сколь угодно малом пороге ошибки. При достаточно слабых предположениях о спектре ковариационного оператора порождающего процесса найдено необходимое и достаточное условие того, что сложность аппроксимации в среднем случайного поля имеет оценку сверху специального вида. При этом показано, что этому условию удовлетворяет весьма важный и широкий класс случаев, а порядок указанной оценки сверху для сложности аппроксимации в среднем совпадает с порядком ее асимптотик, которые были ранее получены в работе Лифшица и Туляковой.Ключевые слова:
сложность аппроксимации в среднем, случайное поле, тензорная степень, высокая размерность, трактабильность
Скачивания
Библиографические ссылки
Литература
References
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.