Механика разрушения полученных по растворной технологии нанокомпозитов, армированных углеродными нанотрубками

Авторы

  • Эммануэль Гдутос Афинская академия наук, Греция, 106 79, Афины, ул. Панепистимиу, 28
  • Мария Конста-Гдутос Техасскийуниверситет в Арлингтоне, Соединенные Штаты Америки, 76019, Арлингтон, Teхас, С. Неддерман Драйв, 701

DOI:

https://doi.org/10.21638/spbu01.2022.306

Аннотация

Целью данной статьи является исследование характеристик механики разрушения нанокомпозитов, изготовленных по растворной технологии, армированных многостенными углеродными нанотрубками (MWCNTs). Коэффициент интенсивности критического напряжения KIc, скорость выделения энергии деформации GIc, эффективная длина трещины ac и смещение раскрытия вершины трещины CTODc определяются с использованием образцов с трехточечным изгибом. Было установлено, что армирование раствора MWCNTs обеспечивает существенное улучшение вышеуказанных характеристик механики разрушения.

Ключевые слова:

механика разрушения, многостенные углеродные нанотрубки, коэффициент интенсивности напряжений, скорость выделения энергии, смещение вершины трещины, нанокомпозиты строительных растворов, цементирующие материалы

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Литература

1. Konsta-Gdoutos M.S., Metaxa Z.S., Shah S.P. Highly dispersed carbon nanotubes reinforced cement based materials. Cem. Concr. Res. 40, 1052-1059 (2010). https://doi.org/10.1016/j.cemconres.2010.02.015

2. Jenq Y., Shah S.P. Two parameter fracture model for concrete. J. Eng. Mech. 111, 1227-1241 (1985).

3. Akkaya Y., Shah S.P., Ghandehari M. Influence of fiber dispersion on the performance of microfiber reinforced cement composites. In: ACI Special Publications 216: Innovations in Fiber-Reinforced Concrete for Value, SP-216-1, vol. 216, 1-18 (2003).

4. Makar J.M., Margeson J., Luh J. Carbon nanotube/cement composites - early results and potential applications. Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications. Canada, Vancouver, B. C., 1-10 (2005).

5. Li G.Y., Wang P.M., Zhao X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43 (6), 1239-1245 (2005). https://doi.org/10.1016/j.carbon.2004.12.017

6. Li G.Y., Wang P.M., Zhao X. Pressure-sensitive and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Comp. 29 (5), 377-382 (2007). https://doi.org/10.1016/j.cemconcomp.2006.12.011

7. Saez de Ibarra Y., Gaitero J.J., Erkizia E., Campillo I. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Physica Status Solidi (a) 203 (6), 1076-1081 (2006). https://doi.org/10.1002/pssa.200566166

8. Wansom S., Kidner N.J., Woo L.Y., Mason T.O. AC-impedance response of multiwalled carbon nanotube/cement composites. Cem. Concr. Comp. 28 (6), 509-519 (2006). https://doi.org/10.1016/j.cemconcomp.2006.01.014

9. Cwirzen A., Habermehl-Chirzen K., Penttala V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 20 (2), 65-73 (2008). https://doi.org/10.1680/adcr.2008.20.2.65

10. Xie X.L., Mai Y.W., Zhou X.P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. Rep. 49 (4), 89-112 (2005). https://doi.org/10.1016/j.mser.2005.04.002

11. Konsta-Gdoutos M.S., Metaxa Z.S., Shah S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 32 (2), 110-115 (2010). https://doi.org/10.1016/j.cemconcomp.2009.10.007

12. Metaxa Z.S., Konsta-Gdoutos M.S., Shah S.P. Carbon nanofiber cementitious composites: effect of debulking procedure on dispersion and reinforcing efficiency. Cem. Concr. Compos. 36, 25-32 (2013). https://doi.org/10.1016/j.cemconcomp.2012.10.009

13. Konsta-Gdoutos M.S., Aza Ch.A. Self-sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Compos. 53, 162-169 (2014). https://doi.org/10.1016/j.cemconcomp.2014.07.003

14. Hillerborg A. Analysis of fracture by means of the fictitious crack model, particularly for fiber reinforced concrete. Int. J. Cem. Comps. 2, 177-185 (1980).

15. Hillerborg A. The theoretical basis of method to determine the fracture energy Gf of concrete. Materials and Structures 18, 291-296 (1985). https://doi.org/10.1007/BF02472919

16. Carpinteri A., Ingraffea R. (eds). Fracture Mechanics of Concrete: Material Characterization and Testing. Hague, Boston, Lancaster, Martinus Nijhoff Publishers (1984).

17. Shah S.P. (ed.). Application of Fracture Mechanics to Cementitious Composites. Dordrecht, Boston, Lancaster, Martinus Nijhoff Publishers (1985).

18. Wittmann F.H. (ed.). Fracture Toughness and Fracture Energy of Concrete. Amsterdam, Elsevier (1986).

19. Elfgren L., Shah S.P. (eds). Analysis of Concrete Structures by Fracture Mechanics. London, New York, Tokyo, Melbourne, Madras, Chapman and Hall (1991).

20. Bazant Z.P. (ed.). Current Trends in Concrete Fracture Research. Dordrecht, Boston, London, Kluwer Academic Publishers (1991).

21. Shah S.P., Carpinteri (eds). Fracture Mechanics Test Methods for Concrete. London, New York, Tokyo, Melbourne, Madras, Chapman and Hall (1991).

22. Bazant Z.P. (ed.). Fracture Mechanics of Concrete Structures. London, New York, Elsevier Applied Science (1992).

23. Shah S.P., Swartz S.E., Ouyang C. Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials. Wiley (1995).

24. Cotterell B., Mai Y.W. Fracture Mechanics of Cementitious Materials. London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras, Blackie Academic & Professional (1996).

25. Bazant Z.P., Planas J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press (1998).

26. Vipulanandan C., Gerstle W.H. (eds). Fracture Mechanics for Concrete Materials: Testing and Applications. American Concrete Institute (2001).

27. Gdoutos E.E. Fracture Mechanics. 3rd ed. Springer (2020).

28. Reda T.M.M., Xiao X., Yi J., Shrive N.G. Evaluation of flexural fracture toughness for quasi-brittle structural materials using a simple test method. Can. J. Civ. Eng. 29, 567-575 (2002). https://doi.org/10.1139/l02-044

29. Karihaloo B.L., Nallathambi P. An improved effective crack model for the determination of fracture toughness in concrete. Cement and Concrete Research 19, 603-610 (1989). https://doi.org/10.1016/0008-8846(89)90012-4

30. Moukwa M., Lewis B.G., Shah S.P., Quyang C. Effects of clays on fracture properties of cement-based materials. Cement and Concrete Research 23, 711-723 (1993). https://doi.org/10.1016/0008-8846(93)90022-2

31. Das S.A.M., Dey V., Kachal R., Mobasher B., Sant G., Neithalath N. The fracture response of blended formulations containing limestone powder: Evaluations using twoparameter fracture model and digital image correlation. Cem. Concr. Comp. 53, 316-326 (2014). https://doi.org/10.1016/j.cemconcomp.2014.07.018

32. Sarker P.K., Haque R., Ramgolam K.V. Fracture behaviour of heat cured fly ash based geopolymer concrete. Mat. Design. 44, 580-586 (2013). https://doi.org/10.1016/j.matdes.2012.08.005

33. Nikbin I.M., Beygi M.H.A., Kazemi M.T., Amiri J.V., Rahmani E., Rabbanifar S., Eslami M. Effect of coarse aggregate volume on fracture behavior of self compacting concrete. Const. Build. Mat. 52, 137-145 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.041

34. Stynoski P., Mondal P., Marsh C. Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar. Cem. Concr. Comp. 55, 232-240 (2015). https://doi.org/10.1016/j.cemconcomp.2014.08.005

References

1. Konsta-Gdoutos M.S., Metaxa Z.S., Shah S.P. Highly dispersed carbon nanotubes reinforced cement based materials. Cem. Concr. Res. 40, 1052-1059 (2010). https://doi.org/10.1016/j.cemconres.2010.02.015

2. Jenq Y., Shah S.P. Two parameter fracture model for concrete. J. Eng. Mech. 111, 1227-1241 (1985).

3. Akkaya Y., Shah S.P., Ghandehari M. Influence of fiber dispersion on the performance of microfiber reinforced cement composites. In: ACI Special Publications 216: Innovations in Fiber-Reinforced Concrete for Value, SP-216-1, vol. 216, 1-18 (2003).

4. Makar J.M., Margeson J., Luh J. Carbon nanotube/cement composites - early results and potential applications. Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications. Canada, Vancouver, B. C., 1-10 (2005).

5. Li G.Y., Wang P.M., Zhao X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43 (6), 1239-1245 (2005). https://doi.org/10.1016/j.carbon.2004.12.017

6. Li G.Y., Wang P.M., Zhao X. Pressure-sensitive and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Comp. 29 (5), 377-382 (2007). https://doi.org/10.1016/j.cemconcomp.2006.12.011

7. Saez de Ibarra Y., Gaitero J.J., Erkizia E., Campillo I. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Physica Status Solidi (a) 203 (6), 1076-1081 (2006). https://doi.org/10.1002/pssa.200566166

8. Wansom S., Kidner N.J., Woo L.Y., Mason T.O. AC-impedance response of multiwalled carbon nanotube/cement composites. Cem. Concr. Comp. 28 (6), 509-519 (2006). https://doi.org/10.1016/j.cemconcomp.2006.01.014

9. Cwirzen A., Habermehl-Chirzen K., Penttala V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 20 (2), 65-73 (2008). https://doi.org/10.1680/adcr.2008.20.2.65

10. Xie X.L., Mai Y.W., Zhou X.P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. Rep. 49 (4), 89-112 (2005). https://doi.org/10.1016/j.mser.2005.04.002

11. Konsta-Gdoutos M.S., Metaxa Z.S., Shah S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 32 (2), 110-115 (2010). https://doi.org/10.1016/j.cemconcomp.2009.10.007

12. Metaxa Z.S., Konsta-Gdoutos M.S., Shah S.P. Carbon nanofiber cementitious composites: effect of debulking procedure on dispersion and reinforcing efficiency. Cem. Concr. Compos. 36, 25-32 (2013). https://doi.org/10.1016/j.cemconcomp.2012.10.009

13. Konsta-Gdoutos M.S., Aza Ch.A. Self-sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Compos. 53, 162-169 (2014). https://doi.org/10.1016/j.cemconcomp.2014.07.003

14. Hillerborg A. Analysis of fracture by means of the fictitious crack model, particularly for fiber reinforced concrete. Int. J. Cem. Comps. 2, 177-185 (1980).

15. Hillerborg A. The theoretical basis of method to determine the fracture energy Gf of concrete. Materials and Structures 18, 291-296 (1985). https://doi.org/10.1007/BF02472919

16. Carpinteri A., Ingraffea R. (eds). Fracture Mechanics of Concrete: Material Characterization and Testing. Hague, Boston, Lancaster, Martinus Nijhoff Publishers (1984).

17. Shah S.P. (ed.). Application of Fracture Mechanics to Cementitious Composites. Dordrecht, Boston, Lancaster, Martinus Nijhoff Publishers (1985).

18. Wittmann F.H. (ed.). Fracture Toughness and Fracture Energy of Concrete. Amsterdam, Elsevier (1986).

19. Elfgren L., Shah S.P. (eds). Analysis of Concrete Structures by Fracture Mechanics. London, New York, Tokyo, Melbourne, Madras, Chapman and Hall (1991).

20. Bazant Z.P. (ed.). Current Trends in Concrete Fracture Research. Dordrecht, Boston, London, Kluwer Academic Publishers (1991).

21. Shah S.P., Carpinteri (eds). Fracture Mechanics Test Methods for Concrete. London, New York, Tokyo, Melbourne, Madras, Chapman and Hall (1991).

22. Bazant Z.P. (ed.). Fracture Mechanics of Concrete Structures. London, New York, Elsevier Applied Science (1992).

23. Shah S.P., Swartz S.E., Ouyang C. Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials. Wiley (1995).

24. Cotterell B., Mai Y.W. Fracture Mechanics of Cementitious Materials. London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras, Blackie Academic & Professional (1996).

25. Bazant Z.P., Planas J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press (1998).

26. Vipulanandan C., Gerstle W.H. (eds). Fracture Mechanics for Concrete Materials: Testing and Applications. American Concrete Institute (2001).

27. Gdoutos E.E. Fracture Mechanics. 3rd ed. Springer (2020).

28. Reda T.M.M., Xiao X., Yi J., Shrive N.G. Evaluation of flexural fracture toughness for quasi-brittle structural materials using a simple test method. Can. J. Civ. Eng. 29, 567-575 (2002). https://doi.org/10.1139/l02-044

29. Karihaloo B.L., Nallathambi P. An improved effective crack model for the determination of fracture toughness in concrete. Cement and Concrete Research 19, 603-610 (1989). https://doi.org/10.1016/0008-8846(89)90012-4

30. Moukwa M., Lewis B.G., Shah S.P., Quyang C. Effects of clays on fracture properties of cement-based materials. Cement and Concrete Research 23, 711-723 (1993). https://doi.org/10.1016/0008-8846(93)90022-2

31. Das S.A.M., Dey V., Kachal R., Mobasher B., Sant G., Neithalath N. The fracture response of blended formulations containing limestone powder: Evaluations using twoparameter fracture model and digital image correlation. Cem. Concr. Comp. 53, 316-326 (2014). https://doi.org/10.1016/j.cemconcomp.2014.07.018

32. Sarker P.K., Haque R., Ramgolam K.V. Fracture behaviour of heat cured fly ash based geopolymer concrete. Mat. Design. 44, 580-586 (2013). https://doi.org/10.1016/j.matdes.2012.08.005

33. Nikbin I.M., Beygi M.H.A., Kazemi M.T., Amiri J.V., Rahmani E., Rabbanifar S., Eslami M. Effect of coarse aggregate volume on fracture behavior of self compacting concrete. Const. Build. Mat. 52, 137-145 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.041

34. Stynoski P., Mondal P., Marsh C. Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar. Cem. Concr. Comp. 55, 232-240 (2015). https://doi.org/10.1016/j.cemconcomp.2014.08.005

Загрузки

Опубликован

10.10.2022

Как цитировать

Гдутос, Э., & Конста-Гдутос, М. (2022). Механика разрушения полученных по растворной технологии нанокомпозитов, армированных углеродными нанотрубками. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 9(3), 452–463. https://doi.org/10.21638/spbu01.2022.306

Выпуск

Раздел

К юбилею Н.Ф. Морозова