On contact problems with a deformable punch and variable rheology

Authors

  • Vladimir A. Babeshko Southern Scientific Center of the Russian Academy of Sciences, 41, ul. Chekhova, Rostov-on-Don, 344006, Russian Federation; Kuban State University, 149, ul. Stavropolskaya, Krasnodar, 350040, Russian Federation
  • Olga V. Evdokimova Kuban State University, 149, ul. Stavropolskaya, Krasnodar, 350040, Russian Federation
  • Olga M. Babeshko Kuban State University, 149, ul. Stavropolskaya, Krasnodar, 350040, Russian Federation
  • Marina V. Zaretskaya Kuban State University, 149, ul. Stavropolskaya, Krasnodar, 350040, Russian Federation
  • Vladimir S. Evdokimov Kuban State University, 149, ul. Stavropolskaya, Krasnodar, 350040, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2023.401

Abstract

The paper presents for the first time one of the methods for studying and solving contact problems with a deformed stamp for those cases when there is a need to change the rheology of the stamp material. It is based on a new universal modeling method previously published by the authors, which is used in boundary value problems for systems of partial differential equations. With its help, solutions of complex vector boundary value problems for systems of differential equations can be decomposed into solutions of scalar boundary value problems for individual differential equations. Among them, the Helmholtz equations are the simplest. Solutions to scalar boundary value problems are represented as fractals, self-similar mathematical objects first introduced by the American mathematician B. Mandelbrot. The role of fractals is performed by packed block elements. The transition from systems of differential equations in partial derivatives to individual equations is carried out using the transformation of academician B. G. Galerkin or representation by potentials. It is known that the solutions of dynamic contact problems with a deformable stamp of complex rheology are cumbersome, and their study is always difficult. The problem is complicated by the presence of discrete resonant frequencies in such problems, which were once discovered by Academician I. I. Vorovich.

Keywords:

block element, factorization, integral equations, external forms, cracks of a new type

Downloads

Download data is not yet available.
 

References

Литература

1. Papangelo A., Ciavarella M., Barber J.R. Fracture mechanics implications for apparent static friction coefficient in contact problems involving slip-weakening laws. Proc. R. Soc. A. 471, 20150271 (2015). https://doi.org/10.1098/rspa.2015.0271

2. Zhou S., Gao X. L. Solutions of half-space and half-plane contact problems based on surface elasticity. Z. Angew. Math. Phys. 64, 145-166 (2013). https://doi.org/10.1007/s00033-012-0205-0

4. Cocou M. A class of dynamic contact problems with Coulomb friction in viscoelasticity. Nonlinear Analysis: Real World Applications 22, 508-519 (2015). https://doi.org/10.1016/j.nonrwa.2014.08.012

5. Ciavarella M. The generalized Cattaneo partial slip plane contact problem. I. Theory. Int. J. Solids Struct 35 (18), 2349-2362 (1998). https://doi.org/10.1016/S0020-7683(97)00154-6

6. Ciavarella M. The generalized Cattaneo partial slip plane contact problem. II. Examples. Int. J. Solids Struct. 35 (18), 2363-2378 (1998). https://doi.org/10.1016/S0020-7683(97)00155-8

7. Guler M.A., Erdogan F. The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings. Int. J. Mech. Sci. 49 (2), 161-182 (2007). https://doi.org/10.1016/j.ijmecsci.2006.08.006

8. Ke L.-L.,Wang Y.-S. Two-dimensional sliding frictional contact of functionally graded materials. Eur. J. Mech. A/Solids 26 (1), 171-188 (2007). https://doi.org/10.1016/j.euromechsol.2006.05.007

9. Almqvist A., Sahlin F., Larsson R., Glavatskih S. On the dry elasto-plastic contact of nominally flat surfaces. Tribology International 40 (4), 574-579 (2007). https://doi.org/10.1016/j.triboint.2005.11.008

10. Andersson L.E. Existence results for quasistatic contact problems with Coulomb friction. Appl. Math. Optim. 42, 169-202 (2000). https://doi.org/10.1007/s002450010009

11. Cocou M., Rocca R. Existence results for unilateral quasistatic contact problems with friction and adhesion. Math. Modelling and Num. Analysis 34 (5), 981-1001 (2000).

12. Kikuchi N., Oden J. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Philadelphia, SIAM (1988).

13. Raous M., Cang´emi L., Cocou M. A consistent model coupling adhesion, friction, and unilateral contact. Comput. Meth. Appl. Mech. Engrg. 177, 383-399 (1999). https://doi.org/10.1016/S0045-7825(98)00389-2

14. Shillor M., Sofonea M., Telega J. J. Models and Analysis of Quasistatic Contact. Lect. Notes Phys., vol. 655. Berlin, Heidelberg, Springer (2004). https://doi.org/10.1007/b99799

15. Бабешко В.А., Евдокимова О.В., Бабешко О.М. О контактных задачах с деформируемым штампом. Проблемы прочности и пластичности 84 (1), 25-34 (2022). https://doi.org/10.32326/1814-9146-2022-84-1-25-34

16. Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. Москва, Наука (1979).

17. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Фрактальные свойства блочных элементов и новыйуниверсальный метод моделирования. Доклады Академии наук 499, 21-26 (2021). https://doi.org/9.31857/S2686740021040039

18. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Об одном методе решения граничных задач динамическойтеории упругости в четверть плоскости. Прикладная математика и механика 85 (3), 275-282 (2021). https://doi.org/10.31857/S0032823521030024

19. Новацкий В. Теория упругости. Москва, Мир (1975).

20. Бабешко В.А., Евдокимова О. В., Бабешко О.М. Об однойфакторизационной задаче Гильберта-Винера и методе блочного элемента. Доклады Академии наук 459 (5), 557-561 (2014).

21. Babeshko V.A., Evdokimova O.V., Babeshko O.M. On the problem of evaluating the behavior of multicomponent materials in mixed boundary conditions in contact problems. Materials Physics and Mechanics 48 (3), 379-385 (2022). https://doi.org/10.18720/MPM.48(3)2022_8

22. Ворович И.И. Спектральные свойства краевой задачи теории упругости для неоднородной полосы. Доклады Академии наук СССР 245 (4), 817-820 (1979).

23. Ворович И.И. Резонансные свойства упругойнео днороднойполосы. Доклады Академии наук СССР 245 (5), 1076-1079 (1979).

References

1. Papangelo A., Ciavarella M., Barber J.R. Fracture mechanics implications for apparent static friction coefficient in contact problems involving slip-weakening laws. Proc. R. Soc. A. 471, 20150271 (2015). https://doi.org/10.1098/rspa.2015.0271

2. Zhou S., Gao X. L. Solutions of half-space and half-plane contact problems based on surface elasticity. Z. Angew. Math. Phys. 64, 145-166 (2013). https://doi.org/10.1007/s00033-012-0205-0

4. Cocou M. A class of dynamic contact problems with Coulomb friction in viscoelasticity. Nonlinear Analysis. Real World Applications 22, 508-519 (2015). https://doi.org/10.1016/j.nonrwa.2014.08.012

5. Ciavarella M. The generalized Cattaneo partial slip plane contact problem. I. Theory. Int. J. Solids Struct 35 (18), 2349-2362 (1998). https://doi.org/10.1016/S0020-7683(97)00154-6

6. Ciavarella M. The generalized Cattaneo partial slip plane contact problem. II. Examples. Int. J. Solids Struct 35 (18), 2363-2378 (1998). https://doi.org/10.1016/S0020-7683(97)00155-8

7. Guler M.A., Erdogan F. The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings. Int. J. Mech. Sci 49 (2), 161-182 (2007). https://doi.org/10.1016/j.ijmecsci.2006.08.006

8. Ke L.-L.,Wang Y.-S. Two-dimensional sliding frictional contact of functionally graded materials. Eur. J. Mech. A/Solids 26 (1), 171-188 (2007). https://doi.org/10.1016/j.euromechsol.2006.05.007

9. Almqvist A., Sahlin F., Larsson R., Glavatskih S. On the dry elasto-plastic contact of nominally flat surfaces. Tribology International 40 (4), 574-579 (2007). https://doi.org/10.1016/j.triboint.2005.11.008

10. Andersson L.E. Existence results for quasistatic contact problems with Coulomb friction. Appl. Math. Optim. 42, 169-202 (2000). https://doi.org/10.1007/s002450010009

11. Cocou M., Rocca R. Existence results for unilateral quasistatic contact problems with friction and adhesion. Math. Modelling and Num. Analysis 34 (5), 981-1001 (2000).

12. Kikuchi N., Oden J. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods SIAM, Philadelphia (1988).

13. Raous M., Cang´emi L., Cocou M. A consistent model coupling adhesion, friction, and unilateral contact. Comput. Meth. Appl. Mech. Engrg. 177, 383-399 (1999). https://doi.org/10.1016/S0045-7825(98)00389-2

14. Shillor M., Sofonea M., Telega J. J. Models and Analysis of Quasistatic Contact. Lect. Notes Phys., vol. 655. Berlin, Heidelberg, Springer (2004). https://doi.org/10.1007/b99799

15. Babeshko V.A., Evdokimova O.V., Babeshko O.M. On contact problems with a deformable stamp. Problems of strength and ductility 84 (1), 25-34 (2022). https://doi.org/10.32326/1814-9146-2022-84-1-25-34 (In Russian)

16. Vorovich I. I., Babeshko V.A. Dynamic mixed problems of elasticity theory for non-classical domains. Moscow, Nauka Publ. (1979). (In Russian)

17. Babeshko V.A., Evdokimova O.V., Babeshko O.M. Fractal properties of block elements and a new universal modeling method. Doklady Akademii nauk 499, 21-26 (2021). https://doi.org/9.31857/S2686740021040039 (In Russian)

18. Babeshko V.A., Evdokimova O.V., Babeshko O.M. On one method for solving boundary value problems of dynamic theory of elasticity in a quarter-plane. Applied Mathematics and Mechanics 85 (3), 275-282 (2021). https://doi.org/10.31857/S0032823521030024 (In Russian)

19. Novatsky V. Theory of elasticity. Moscow, Mir Publ. (1975). (In Russian)

20. Babeshko V.A., Evdokimova O.V., Babeshko O.M. On one Hilbert-Wiener factorization problem and the block element method. Doklady Akademii nauk 459 (5), 557-561 (2014). (In Russian)

21. Babeshko V.A., Evdokimova O.V., Babeshko O.M. On the problem of evaluating the behavior of multicomponent materials in mixed boundary conditions in contact problems. Materials Physics and Mechanics 48 (3), 379-385 (2022). https://doi.org/10.18720/MPM.48(3)2022_8

22. Vorovich I. I. Spectral properties of the boundary value problem of elasticity theory for an inhomogeneous strip. Doklady of the USSR Academy of Sciences 245 (4), 817-820 (1979). (In Russian)

23. Vorovich I. I. Resonance properties of an elastic inhomogeneous strip. Doklady of the USSR Academy of Sciences 245 (5), 1076-1079 (1979). (In Russian)

Published

2023-12-23

How to Cite

Babeshko, V. A., Evdokimova, O. V., Babeshko, O. M., Zaretskaya, M. V., & Evdokimov, V. S. (2023). On contact problems with a deformable punch and variable rheology. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 10(4), 588–599. https://doi.org/10.21638/spbu01.2023.401

Issue

Section

On the anniversary of A. K. Belyaev

Most read articles by the same author(s)