Power series of several variables with condition of logarithmical convexity

Authors

  • Alexandr V. Zheleznyak St. Petersburg Electrotechnical University LETI, 5, ul. Professora Popova, St. Petersburg, 197376, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2021.105

Abstract

We obtain a new version of Hardy theorem about power series of several variables reciprocal to the power series with positive coefficients. We prove that if the sequence {as} = as1,s2,...,sn, ||s|| ≥ K satisfies condition of logarithmically convexity and the first coefficient a0 is sufficiently large then reciprocal power series has only negative coefficients {bs} = bs1,s2,...,sn, except b0,0,...,0 for any K. The classical Hardy theorem corresponds to the case K = 0, n = 1. Such results are useful in Nevanlinna - Pick theory. For example, if function k(x, y) can be represented as power series Σn≥0 an(x-y)n, an > 0, and reciprocal function 1/k(x,y) can be represented as power series Σn≥0 bn(x-y)n such that bn < 0, n > 0, then k(x, y) is a reproducing kernel function for some Hilbert space of analytic functions in the unit disc D with Nevanlinna-Pick property. The reproducing kernel 1/1-x-y of the classical Hardy space H2(D) is a prime example for our theorems.

Keywords:

power series, Nevanlinna-Pick kernels, logarithmical convexity

Downloads

Download data is not yet available.
 

References

Литература

1. Agler J., McCarthy J.E. Pick interpolation and Hilbert function spaces. In: Graduate Studies in

2. Hardy G.H. Divergent Series. Oxford, Clarendon Press (1949).

3. Полиа З.Г., Сеге Г. Задачи и теоремы из анализа. Москва, Наука (1978).

4. Shimorin S. Complete Nevanlinna-Pick property of Dirichlet-type spaces. Journ. of Funct.

5. Железняк А.В. Степенные ряды одной переменной с условием логарифмической выпуклости коэффициентов. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 7 (65), вып. 1, 28–38 (2020). https://doi.org/10.21638/11701/spbu01.2020.103

6. Железняк А.В. Многомерный аналог условия Харди для степенных рядов. Вестник Санкт-Петербургского университета. Серия 1. Математика. Механика. Астрономия, вып. 4, 28–33 (2009).

References

1. Agler J., McCarthy J. E. Pick interpolation and Hilbert function spaces. In: Graduate Studies in Mathematics, vol. 44. Providence, American Mathematician Society (2002).

2. Hardy G.H. Divergent Series. Oxford, Clarendon Press (1949).

3. Polia Z.G., Sege G. Problems and theorems of analysis. Moscow, Nauka Publ. (1978). (In Russian)

4. Shimorin S. Complete Nevanlinna-Pick property of Dirichlet-type spaces. Journ. of Funct. Anal. 191, 276–296 (2002).

5. Zheleznyak A. Power series of one variable with condition of logarithmical convexity. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 7 (65), iss. 1, 28–38 (2020). https://doi.org/10.21638/11701/spbu01.2020.103 (In Russian) [Engl. transl.: Vestnik St. Petersb. Univ. Math. 53, iss. 1, 20–28 (2020). https://doi.org/10.1134/S1063454120010148].

6. Zheleznyak A. Multidimensional analog of the Hardy condition for power series. Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, iss. 4, 28– 33 (2009). (In Russian) [Engl. transl.: Vestnik St.Petersb. Univ. Math. 42, 269–274 (2009). https://doi.org/10.3103/S1063454109040049].

Published

2021-05-29

How to Cite

Zheleznyak, A. V. (2021). Power series of several variables with condition of logarithmical convexity. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8(1), 49–62. https://doi.org/10.21638/spbu01.2021.105

Issue

Section

Mathematics